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DIFFERENTIAL ALGEBRAIC GEOMETRY:
GENERIC INTERSECTIONS AND
THE DIFFERENTIAL CHOW FORM
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ABSTRACT. In this paper, an intersection theory for generic differential poly-
nomials is presented. The intersection of an irreducible differential variety of
dimension d and order h with a generic differential hypersurface of order s is
shown to be an irreducible variety of dimension d — 1 and order h + s. As a
consequence, the dimension conjecture for generic differential polynomials is
proved. Based on intersection theory, the Chow form for an irreducible dif-
ferential variety is defined and most of the properties of the Chow form in
the algebraic case are established for its differential counterpart. Furthermore,
the generalized differential Chow form is defined and its properties are proved.
As an application of the generalized differential Chow form, the differential
resultant of n + 1 generic differential polynomials in n variables is defined and
properties similar to that of the Macaulay resultant for multivariate polyno-
mials are proved.
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1. INTRODUCTION

Differential algebra or differential algebraic geometry founded by Ritt and Kol-
chin aims to study algebraic differential equations in a similar way in which polyno-
mial equations are studied in commutative algebra or algebraic geometry [32] [19].
Therefore, the basic concepts of commutative differential algebra are based on those
of commutative algebra. An excellent survey on this subject can be found in [4].

It is known that, for many properties in algebraic geometry, their differential
counterparts are much more difficult to prove and some of them are still open
problems. For instance, many of the 16 questions proposed by Ritt in his classic
book Differential Algebra [32), p.177] are still not solved. In this paper, two naturally
connected problems in differential algebraic geometry are studied: the differential
dimension conjecture for generic differential polynomials and the differential Chow
form.

The first part of the paper is concerned with the differential dimension conjecture
which is one of the problems proposed by Ritt: Let Fi, ..., F,. be differential polyno-
mials in F{y1, ...,yn} with r < n, where F is a differential field. If the differential
variety of the system {Fi,..., F.} is nonempty, then each of its components is of
dimension at least n — r [32] p.178].

Ritt proved that the conjecture is correct when r = 1, that is, any component of
a differential polynomial equation in F{yi, ..., yn} is of dimension n—1 [32, p.57].
The general differential dimension conjecture is still open. In [8], it is shown that
the differential dimension conjecture is closely related with Jacobi’s bound for the
order of differential polynomial systems, which is another well-known conjecture in
differential algebra.

In this paper, we consider the dimension and order for the intersection of an
irreducible differential variety with generic differential hypersurfaces. A differential
polynomial f is said to be generic of order s and degree m if f contains all the
monomials with degree less than or equal to m in yq,...,y, and their derivatives
of order up to s, and the coefficients of f are differential indeterminates. A generic
differential hypersurface is the set of solutions of a generic differential polynomial.
We show that for generic differential hypersurfaces, we can determine the dimension
and order of their intersection with an irreducible differential variety explicitly.
More precisely, we will prove

Theorem 1.1. Let T be a prime differential polynomial ideal in F{yi,...,yn} with
dimension d and order h and f a generic differential polynomial with order s and
degree greater than zero. If d > 0, then Ty = [Z, f] is a prime differential polynomial
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DIFFERENTIAL CHOW FORM 4577

ideal in F{ug){y1,...,yn}t with dimension d — 1 and order h + s, where uy is the
set of coefficients of f. Also, if d =0, I, is the unit ideal in F{ug){yi,...,Yn}-

As a direct consequence of this result, we show that the dimension conjecture
is valid for a system of generic differential polynomials. Furthermore, the order of
the system is also given explicitly.

Another purpose for studying the intersection of an irreducible differential variety
with generic differential hypersurfaces is to establish the theory of the differential
Chow form, which is the concern of the second part of the paper consisting of
Sections 4 to 6.

The Chow form, also known as the Cayley form or the Cayley-Chow form, is a
basic concept in algebraic geometry [41] [16]. More recently, the Chow form also
became a powerful tool in elimination theory. This is not surprising, since the Chow
form is a resultant in a certain sense. The Chow form was used as a tool to obtain
deep results in transcendental number theory by Nesterenko [27] and Philippon [29].
Brownawell made a major breakthrough in elimination theory by developing new
properties of the Chow form and proving an effective version of the Nullstellensatz
with optimal bounds [3]. Gel’fand et al. and Sturmfels started the sparse elimination
theory, which is to study the Chow form and the resultant associated with sparse
polynomials [13, 40]. Eisenbud et al. proposed a new expression for the Chow
form via exterior algebra and used it to give explicit formulas in many new cases
[1I]. Jeronimo et al. gave a bounded probabilistic algorithm which can be used
to compute the Chow form, whose complexity is polynomial in the size and the
geometric degree of the input equation system [I7]. Other properties of the Chow
form can be found in [28 B0, 38]. Given the fact that the Chow form plays an
important role in both theoretic and algorithmic aspects of algebraic geometry
and has applications in many fields, it is worthwhile to develop the theory of the
differential Chow form and hope that it will play a similar role as its algebraic
counterpart.

Let V be an irreducible differential variety of dimension d in an n-dimensional
differential affine space and

P; = w0 +upnyi + -+ winyn (1 =0,...,d)

d+1 generic hyperplanes in differential variables y,. .., yn, where u;; (i =0, ...,d;
j =0,...,n) are differential indeterminates. The differential Chow form of V is
roughly defined to be the elimination differential polynomial in u;; for the intersec-
tion of V with P; = 0(¢s = 0,...,d). More intuitively, the differential Chow form
of V' can be roughly considered as the condition on the coefficients of P; such that
these d + 1 hyperplanes will meet V. We will show that most of the properties of
the Chow form in the algebraic case presented in [16, [41] can be generalized to the
differential case. Precisely, we will prove

Theorem 1.2. Let V' be an irreducible differential variety with dimension d and or-
der h over a differential field F and F(ug,uy,...,uq) € F{ug,uy,...,us} the Chow
form of V' where u; = (w0, Wi, ..., uin) (1 =0,1,...,d). Then F(up,uy,...,ug)
has the following properties:

1. F(ug,uy,...,uy) is differentially homogenous of the same degree in each set
u; and ord(F, u;5) = h for all u;j occurring in F.
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2. F(ug,uy,...,uy) can be factored uniquely into the following form:
? h ~
F(uo,ul,...,ud) = A(uO7U1,...,ud>H(uéo)—quép)pr—FtT)
T=1 p=1
g n
= A(uo, ug,..., ud) H(’U,OO + Z uopng)(h)’
T=1 p=1

where g = deg(F, ué’é)), &-p are in a differential extension field Fr of F, and (ugo +
ZZ:l uop&rp) M) is the h-th derivative of (ugo + ZZ:l op€rp). The first “ =7 s
obtained by factoring F(ug,uy,...,uq) as an algebraic polynomial in the variables
a8 u while the second “ =
00 > Ug1"5 -+ -5 Uon 5

in Section 4.4 of this paper.

3. Er= (1, &m) (T =1,...,9) are generic points of V. Also, they are the
only elements of V' lying on the differential hyperplanes P, = 0(c = 1,...,d) as

7 is a differential expression to be explained

well as on the algebraic hyperplanes aIP’(()l) =0(=0,...,h—1).

4. Suppose that u;(i = 0,...,d) are differentially specialized to sets v; of spe-
cific elements in F and P; (i = 0,...,d) are obtained by substituting u; by v; in
P;,. If P, = 0(i = 0,...,d) meet V, then F(vq,...,vq) = 0. Furthermore, if
F(vo,...,vq) = 0 and Sp(vo,...,vq) # 0, then the d + 1 hyperplanes P; = 0
(1=0,...,d) meet V, where Sp = #é%).

In the above theorem g¢ is called the leading differential degree of V. From the
third statement of the theorem, we see that V' intersects with P, =0(c =1,...,d)
and “IP’(()Z) =0(l=0,...,h—1) in exactly g points. So the leading differential degree
satisfies similar properties with the degree for an algebraic variety.

Furthermore, we prove that the four conditions given in Theorem [[L2] are also the
sufficient conditions for a differential polynomial F'(ug, uy,...,u4) to be the Chow
form for an order un-mixed differential variety or a differential algebraic cycle. As a
consequence of this result, we define the Chow quasi-variety for a class of differential
algebraic cycles in the sense that each point in the Chow quasi-variety represents
a differential algebraic cycle V' in that class via the Chow form of V. These are
clearly generalizations of the algebraic Chow variety and algebraic cycles [13] [16].

Note that both the differential Chow form and the generators of the differential
Chow quasi-variety are proven to be differentially homogenous. Further develop-
ments of these concepts may need the knowledge of differential projective space
[24], which has been ignored to a certain degree in the past.

In [29], Philippon considered the intersection of a variety of dimension d with
d + 1 homogeneous polynomials with generic coeflicients and developed the theory
for an elimination form which can be regarded as a type of generalized Chow form.
In [2], Bost, Gillet, and Soulé further generalized the concept to generalized Chow
divisors of cycles and estimated their heights. In this paper, we will introduce the
generalized differential Chow form which is roughly defined to be the elimination
differential polynomial obtained by intersecting an irreducible differential variety
V' of dimension d with d + 1 generic differential hypersurfaces. We show that
the generalized differential Chow form satisfies similar properties to that given in
Theorem
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As an application of the generalized differential Chow form, we can define the
differential resultant. The differential resultant for two nonlinear differential poly-
nomials in one variable was studied by Ritt in [3T], p.47]. General differential resul-
tants were defined by Carra’ Ferro [5] [6] using Macaulay’s definition of an algebraic
resultant of polynomials. But, the treatment in [5] is not complete. For instance,
the differential resultant for two generic differential polynomials with degree two
and order one in one variable is always zero if using the definition in [5]. Differ-
ential resultants for linear ordinary differential polynomials were studied by Rueda
and Sendra in [36]. In this paper, a rigorous definition for the differential resultant
of n + 1 generic differential polynomials in n variables is given as the generalized
differential Chow form of the prime differential ideal Z = [0]. In this way, we obtain
the following properties for differential resultants, which are similar to that of the
Macaulay resultant for n + 1 algebraic polynomials in n variables.

Theorem 1.3. Let P;(i = 0,...,n) be generic differential polynomials in n dif-
ferential variables y1, ..., y, with orders s;, degrees m;, and degree zero terms u;g,
respectively. Let R(ug,uy,...,u,) be the differential resultant of Py, ..., P, where
u; is the set of coefficients of P;. Then

a) R(ug,uy,...,uy) is differentially homogeneous in each w; and is of order
hi=s—s;inu; (i=0,...,n) withs=>3",s.

b) There exist &,(p = 1,...,n) in the differential extension fields F(t =
1,...,to) of F such that

to
]’%(1107 u,..., un) = /1(1,107 u,..., un) H Po(le, e 7£Tn>(h0),
T=1

where A(ug, uy, ..., u,) is a differential polynomial in u;, to=deg(R, ué}éO)), Po(&r1,
oy &) ) s the ho-th derivative of Po(Er1, .+ Emm), and (Erty. .., &) (T =
1,...,t0) are certain generic points of the zero-dimensional prime differential ideal
[Py,...,Py,).
¢) The differential resultant can be written as a linear combination of P; and
their derivatives up to the order s — s; (i = 0,...,n). Precisely, we have

n s—s;

R(UQ, Ug,..., un) = Z Z hUPEJ)

i=0 j=0

In the above expression, h;j € F(W)[y1,--- Yn,--- ,yi”, ceey yr(f)] have degrees at

most (sn +n)2D*" ™ + D(sn + n), where u = J;_, w; \ {woo, - .., Uno}, y§J) is the
j-th derivative of y;, and D = max{mg, m1,...,my}.

d) Suppose that u;(i =0, ...,n) are differentially specialized to sets v; of specific
elements in F and P; (i = 0,...,n) are obtained by substituting v; by v; in P;.
IfP; =0(i =0,...,n) have a common solution, then R(vy,...,v,) = 0. On the
other hand, if R(vo,...,vn) =0 and Sr(vo,...,Vn) #0, then P; =0(i =0, ...,n)
have a common solution, where Sg = %.

Yoo

As a prerequisite result, we prove a useful property of differential specializations,
which roughly asserts that if a set of differential polynomial functions in a set of
indeterminates are differentially dependent, then they are still differentially depen-
dent when the indeterminates are specialized to any concrete values. This property
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plays a key role throughout this paper. The algebraic version of this result is also
a key result in algebraic elimination theory ([I5], p.168], [43], p.176]).

It is not straightforward to extend the intersection theory for generic polynomials
and the theory of Chow forms from the algebraic case to the differential case. Due to
the complicated structure of differential polynomials, most proofs in the algebraic
case cannot be directly used in the differential case. In particular, we need to
consider the orders of differential polynomials, which is not an issue in the algebraic
case. For instance, the second property of the differential Chow form in Theorem
has a different form as its algebraic counterpart.

One of the main tools used in the paper is the theory of characteristic sets
developed by Ritt [32, p.47]. The algorithmic character of Ritt’s work on differential
algebra is mainly due to the usage of characteristic sets. Properties of characteristic
sets proved more recently in [Tl [7, 10, 12| [43] will also be used in this paper.

The rest of this paper is organized as follows. In Section 2, we will present the
notation and preliminary results used in this paper. In Section 3, the intersection
theory for generic differential polynomials is given and Theorem [I.1] is proved. In
Section 4, the Chow form for an irreducible differential variety is defined and its
properties will be proved. Basically, we will prove Theorem In Section 5,
necessary and sufficient conditions for a differential polynomial to be the Chow
form of a differential algebraic cycle is given and the Chow quasi-variety for a class
of differential algebraic cycles is defined. In Section 6, we present the theory of the
generalized differential Chow form and the differential resultant. Theorem [[.3] will
be proved. In Section 7, we present the conclusion and propose several problems
for further study.

2. PRELIMINARIES

In this section, some basic notation and preliminary results in differential algebra
will be given. For more details about differential algebra, please refer to [32] [19]
25, [, [39).

2.1. Differential polynomial algebra and Kolchin topology. Let F be a fixed
ordinary differential field of characteristic zero, with a derivation §. An element
¢ € F such that §(c) = 0 is called a constant of F. In this paper, unless otherwise
indicated, § is kept fixed during any discussion and we use primes and exponents
() to indicate derivatives under J. Let © denote the free commutative semigroup
with unit (written multiplicatively) generated by §. Throughout the paper, we shall
often use the prefix “0-” as a synonym of “differential” or “differentially”.

A typical example of a differential field is Q(t), which is the field of rational
functions in variable ¢t with § = %.

Let G be a d-extension field of F and S a subset of G. We will denote respectively
by F[S], F(S), F{S}, and F(S) the smallest subring, the smallest subfield, the
smallest d-subring, and the smallest §-subfield of G containing F and S. If we
denote ©(S) to be the smallest subset of G containing S and stable under §, we
have F{S} = F[O(5)] and F(S) = F(O(S5)). A d-extension field G of F is said to
be finitely generated if G has a finite subset S such that G = F(S).

A subset ¥ of a d-extension field G of F is said to be §-dependent over F if the
set (fa)geco,acy is algebraically dependent over F, and is said to be d-independent
over F, or to be a family of §-indeterminates over F (abbr. -F-indeterminates) in
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the contrary case. In the case where X consists of one element «, we say that « is 6-
algebraic or §-transcendental over F, respectively. A maximal subset 2 of G which
is d-independent over F is said to be a J-transcendence basis of G over F. We use
d.tr.degG/F (see [19, pp.105-109]) to denote the d-transcendence degree of G over
F, which is the cardinal number of 2. Considering F and G as ordinary algebraic
fields, we denote the algebraic transcendence degree of G over F by tr.degG/F. If
S is a set of d-indeterminates over F, then we call F(S) a pure §-extension of F.

A homomorphism ¢ from a é-ring (R,d) to a d;-ring (S,d1) is a differential
homomorphism if p o d = 01 o . If Ry is a common §-subring of R and S and if
the homomorphism ¢ leaves every element of Ry invariant, it is said to be over Rg
and is denoted by §-Ro-homomorphism. If, in addition, R is an integral domain
and S is a d-field, ¢ is called a §-specialization of R into S.

A é-extension field £ of F is called a universal d-extension field if for any finitely
generated d-extension field F; of F in £ and any finitely generated §-extension field
Fo of F1 not necessarily in £, F5 can be embedded in £ over Fi, i.e. there exists a
d-extension field of F7 in £ that is d-isomorphic to F5 over F;. Such a d-universal
extension field of F always exists ([I9, Theorem 2, p.134]). By definition, any
finitely generated d-extension field of F can be embedded over F into &, and &£ is
a universal d-extension field of every finitely generated §-extension field of F. In
particular, for any natural number n, we can find in £ a subset of £ of cardinality n
whose elements are §-independent over F. Throughout the present paper, £ stands
for a fixed universal J-extension field of F.

Now suppose Y = {y1,¥2,...,yn} is a set of d-indeterminates over £. For any
y € Y, denote 6*y by y*). The elements of F{Y} = f[yj(-k) cj=1,...,n;k € N]
are called d-polynomials over F in Y, and F{Y} itself is called the §-polynomial
ring over F in Y. A d-polynomial ideal Z in F{Y} is an ordinary algebraic ideal
which is closed under derivation, i.e. §(Z) C Z. In this paper, by d-ideals we mean
d-polynomial ideals, and by a é-F-ideal we mean an ideal in F{Y}. Also, a prime
(resp. radical) d-ideal is a d-ideal which is prime (resp. radical) as an ordinary
algebraic polynomial ideal. For convenience, a prime d-ideal is assumed not to be
the unit ideal in this paper.

By a J-affine space we mean any one of the sets £” (n € N). An element n =
(M1, ..,nn) of £™ will be called a point. Let X be a subset of -polynomials in F{Y}.
A point n = (n1,...,mn) € E™ is called a §-zero of T if f(n) = 0 for any f € 3. The
set of d-zeros of ¥ is denoted by V(2), which is called a §-variety defined over F
(abbr. d-F-variety). Also, for any D € F{Y}, V(X/D) = V(£)\ V(D) is called a -
quasi-variety. For convenience, we also call |J!, V(2;/D;) a §-quasi-variety, where
¥; and D; are d-polynomial sets and d-polynomials, respectively. The d-varieties
in & (resp. the §-F-varieties in £™) are the closed sets in a topology called the
Kolchin topology (resp. the Kolchin F-topology).

For a 0-F-variety V', we denote I(V') to be the set of all é-polynomials in F{Y}
that vanish at every point of V. Clearly, I(V) is a radical é-ideal in F{Y}, and
there exists a bijective correspondence between Kolchin F-closed sets and radical
0-ideals in F{Y}. That is, for any §-F variety V, V(I(V)) = V, and for any radical
0-ideal Z in F{Y}, I(V(Z)) =T.

Similarly as in algebraic geometry, an F-irreducible §-variety can be defined,
and there is a bijective correspondence between F-irreducible §-varieties and prime
0-ideals in F{Y}. A point n € V(Z) is called a generic point of a prime d-ideal
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Z c F{Y} if for any d-polynomial p € F{Y} we have p(n) =0 < p € Z. It is well
known that [32, p.27]

Lemma 2.1. A non-unit d-ideal is prime if and only if it has a generic point.

By the definition of universal d-fields, a prime §-ideal over any finitely generated
d-extension field of F has a generic point in £”. A point n € V is called a generic
point of an irreducible §-variety V if i is a generic point for I(V).

Notice that irreducibility depends on the base field over which the §-polynomials
are defined. For instance, (6y;)? — t is an irreducible d-polynomial in Q(t){y:}
where § = %, but it can be factored in Q(v/#){y1}. Thus, to emphasize the base
field, in the rest of the paper we will use Z = [X] C G{Y} to denote the d-ideal
generated by ¥ in G{Y} and use G; - Z to denote the J-ideal generated by Z in
G1{Y} where G; C £ is a d-extension field of G.

2.2. Characteristic sets of a differential polynomial set. Let f be a J-
polynomial in F{Y}. We define the order of f w.r.t. y; to be the greatest number

k such that yl(k) appears effectively in f, which is denoted by ord(f,y;). If y; does
not appear in f, then we set ord(f,y;) = —oo. The order of f is defined to be
max; ord(f,y;), that is, ord(f) = max; ord(f, y;).

A ranking Z is a total order over O(Y), which is compatible with the derivations
over the alphabet:

1) 60y; > Oy; for all derivatives Oy; € O(Y).

2) Glyi > egyj = (Selyz > 592yj for Glyi,ﬂgyj S @(Y)

By convention, 1 < fy; for all 8y; € O(Y).

Two important kinds of rankings are the following:

1) Elimination ranking: vy; > y; = Sy > 6lyj for any k,1 > 0.

2) Orderly ranking: k > 1= §*y; > d'y;, for any i,j € {1,2,...,n}.

Let p be a §-polynomial in F{Y} and # a ranking endowed on it. The greatest
derivative w.r.t. & which appears effectively in p is called the leader of p, which
will be denoted by w, or ld(p). The two conditions mentioned above imply that
the leader of 0p is Ou, for € ©. Let the degree of p in u, be d. We rewrite p as
an algebraic polynomial in u,. Then

p=Iqul+ Igqul™ '+ + Io.

We call I the initial of p and denote it by I,. The partial derivative of p w.r.t. u,
is called the separant of p, which will be denoted by S,,. Clearly, S, is the initial of
any proper derivative of p. The rank of p is ug, and we denote it by rk(p). For any
two d-polynomials p, ¢ in F{Y}\F, p is said to be of lower rank than ¢ if either
Up < Ug O Up = Uy = u and deg(p,u) < deg(q,u). By convention, any element of
F is of lower rank than elements of F{Y}\F. We denote p < ¢ if and only if either
p is of lower rank than g or they have the same rank. Clearly, < is a total ordering
of F{Y}.

Let p and ¢ be two d-polynomials and ug the rank of p. ¢ is said to be partially
reduced w.r.t. p if no proper derivatives of u, appear in q. ¢ is said to be reduced
w.r.t. pif ¢ is partially reduced w.r.t. p and deg(q,u,) < d. Let A be a set of
d-polynomials. A is said to be an auto-reduced set if each J-polynomial of A is
reduced w.r.t. any other element of A. Every auto-reduced set is finite.

Let A be an auto-reduced set. We denote H 4 to be the set of all the initials and
separants of A and HY to be the minimal multiplicative set containing H4. The
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saturation ideal of A is defined to be
sat(A) = [A] : HY = {p € F{Y}|3h € HY, s. t. hp € [A]}.

Let A= Ay, As,...,A; and B = By, B>, ..., B; be two auto-reduced sets with
the A;, B; arranged in nondecreasing ordering. A is said to be of lower rank than
B if either 1) there is some k (< min{s,{}) such that for each i < k, A; has the
same rank as B;, and Ay < By or 2) s > [, and for each ¢ € {1,2,...,1}, A; has
the same rank as B;. It is easy to see that the above definition really introduces
a partial ordering among all auto-reduced sets. Any sequence of auto-reduced sets
steadily decreasing in ordering A; > Ay > -+ A > -+ - is necessarily finite.

Let A = Ay, As, ..., A; be an auto-reduced set with S; and I; as the separant
and initial of A;, and f any J-polynomial. Then there exists an algorithm, called
Ritt’s algorithm of reduction, which reduces f w.r.t. A to a é-polynomial r that is
reduced w.r.t. A, satisfying the relation

t
HS?Z'I? - f = r,mod [A],
i=1

for nonnegative integers d;,e; (i = 1,2,...,t). We call r the pseudo remainder of f
w.r.t. A.

An auto-reduced set C contained in a d-polynomial set S is said to be a charac-
teristic set of S if S does not contain any nonzero element reduced w.r.t. C. All the
characteristic sets of S have the same and minimal rank among all auto-reduced
sets contained in S. A characteristic set C of a d-ideal 7 reduces to zero all elements
of J. If the é-ideal is prime, C reduces to zero only the elements of J and we have
J =sat(C) ([19, Lemma 2, p.167]).

In polynomial algebra, let A = Ay, As,..., Ay be an algebraic auto-reduced set
arranged in nondecreasing order. A is called an irreducible auto-reduced set if for
any 1 < i <t, there cannot exist any relation of the form

T’ZAZ = BiCIL‘, mod (Al, “ee 7Ai—1>

where B;, C; are polynomials with the same leader as A;, T; is a polynomial with a
lower leader than A;, and B;, C;,T; are reduced w.r.t. Ay,..., A;—1 ([42]). Equiv-
alently, an algebraic auto-reduced set A is irreducible if and only if there exist no
polynomials P and @ which are reduced w.r.t. A and PQ € asat(A) = (A) : I,
where I stands for the set of all products of powers of 14,.

In ordinary differential algebra, we can define an auto-reduced set to be ir-
reducible if, when considered as an algebraic auto-reduced set in the underlying
polynomial ring, it is irreducible. We have ([32] p.107]).

Theorem 2.2. Let A be an auto-reduced set. Then a necessary and sufficient
condition for A to be a characteristic set of a prime 0-ideal is that A is irreducible.
Moreover, in the case A is irreducible, sat(A)=[A] : HY is prime with A being a
characteristic set of it.

Remark 2.3. A set of d-polynomials A = {A4;...,A,} is called a d-chain if the
following conditions are satisfied:

1) the leaders of A; are d-auto-reduced,

2) each A; is partially reduced w.r.t. all the others,

3) no initial of an element of A is reduced to zero by A.
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Similar properties to auto-reduced sets can be developed for §-chains [10]. In
particular, we can define a §-characteristic set of a §-ideal Z to be a §-chain contained
in Z of minimal rank among all the d-chains contained in Z. So, in this paper we
will not distinguish auto-reduced sets and d-chains. Note that we can also use the
weak d-chains introduced in [7].

2.3. Dimension and order of a prime differential polynomial ideal. Let 7
be a prime J-ideal in F{Y} and £ = (&1, ...,&,) a generic point of Z [19, p.19]. The
dimension of T or V(Z) is defined to be the d-transcendence degree of F(&1, ..., &)
over F, that is, dim(Z) = d.tr.deg F(&1,...,&n)/F.

In [32], Ritt gave another definition of the dimension of Z. An independent set
modulo Z is defined to be a variable set U C Y such that Z N F{U} = {0}, and in
this case U is also said to be d-independent modulo Z. A parametric set of T is a
maximal independent set modulo Z. Then Ritt defined the dimension of Z to be the
cardinal number of its parametric set. Clearly, the two definitions are equivalent.

Definition 2.4 ([22]). Let Z be a prime d-ideal of F{Y} with a generic point

7= (M,...,Mn). Then there exists a unique numerical polynomial wz(t) such that
wr(t) = wy,r(t) = tr.deg F(n) : i = 1,...,n;j < t)/F for all sufficiently large

t € N. wz(t) is called the §-dimension polynomial of T.

We now define the order of a prime §-ideal Z, which is also related with the
characteristic set of Z.

Definition 2.5. For an auto-reduced set A = Ay, Ag, ..., A, with 1d(4;) = yﬁ‘”,
t
the order of A is defined to be ord(A) = > o;, and the set Y\{y,,, ..., Y, } is called
i=1
a parametric set of A.

Theorem 2.6 ([34, Theorem 13]). Let T be a prime d-ideal of dimension d. Then
the 0-dimension polynomial has the form wz(t) = d(t + 1) + h, where h is defined
to be the order of T or V(Z), that is, ord(Z) = h. Let A be a characteristic set of
T under any orderly ranking. Then, ord(Z) = ord(.A).

In [32], Ritt introduced the concept of relative order for a prime é-ideal w.r.t. a
particular parametric set.

Definition 2.7. Let Z be a prime d-ideal of F{Y}, A a characteristic set of Z w.r.t.
any elimination ranking, and {u1,...,uqs} C Y the parametric set of A. The relative
order of T w.r.t. {uy,...,uq}, denoted by ord,, .. .,Z, is defined to be ord(A).

yeeey

The relative order of a prime d-ideal Z can be computed from its generic points
as shown by the following result ([21]).

Corollary 2.8 ([21]). Let T be a prime §-ideal in F{Y} with a generic point (&1, . . .,
&) If {y1,...,ya} is a parametric set of I, then

Ordyh...,yd(I) = tr'deg]:<§17 e a€d><€d+la e a§n>/f<§1a e 7§d>~

Ritt’s definition of relative order is based on the elimination ranking. Hubert
proved that all characteristic sets of Z admitting the same parametric set have the
same order [10].

Theorem 2.9 ([I0]). Let A be a characteristic set of a prime d-ideal T in F{Y}
endowed with any ranking. The parametric set U of A is a mazimal independent
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set modulo Z. Its cardinality gives the dimension of Z. Furthermore, the order of
7 relative to U is the order of A.

Corollary 2.10. Let Z be a prime d-ideal with dimension zero and A a character-
istic set of T w.r.t. any ranking #. Then ord(Z) = ord(A).

The following result gives the relation between the order and relative order for
a prime d-ideal.

Theorem 2.11. Let T be a prime d-ideal in F{Y}. Then ord(Z) is the mazximum
of all the relative orders of I, that is, ord(Z) = maxyordy(Z), where U is any
parametric set of T.

Proof. Let C be a characteristic set of Z w.r.t. some orderly ranking. First, we claim
that any relative order of 7 is less than or equal to ord(C). Let U = {uq,...,u,} be
any parametric set of Z, {y1,...,yp}(p+ g = n) the set of the remaining variables,
and B any characteristic set of Z w.r.t. the elimination ranking u; < -+ < ugq <
y1 < -+ < yp. By Theorem 2.9 it suffices to prove ordy(Z) < ord(C).

Let n = (u1,...,uq, U1, - - -, Yp) be a generic point of Z. Then for sufficiently large
t, the d-dimension polynomial of 7 is

wz(t)

= wyr(t)

= tr.deg F(6°uw;, 0"y5 : s,k <tyi=1,...,¢;5=1,...,p)/F

= tr.deg F(6°w; : s < t)(6"75 : k < t)/F(0°%; : s < t) + tr.deg F(6°w; : s < t)/F

= q(t+1)+tr.deg F(6T; : s < t)(6F75 : k < t)/F(6°w; = s < t).

Since wz(t) = q(t+ 1) +ord(C), tr.deg F(6°u; : s < t)(6%y; : k < t)/F(6°u; : s <
t) = ord(C). By Corollary 2.8 we have

ordy(Z)
= tr.deg F(uy, ..., ug) (6" g : k > 0)/Fluy,...,ug)

tr.deg F(u, ..., uq) (6% : k < t)/F(ux,...,ug) (for t > ord(B))
tr.deg F(6°w; : s < t)(0"q5 : k < t)/F(6°w; : s < t)
ord(C).

IN

Thus, the claim is proved.

Now, let U* be the parametric set of C. Then, by Theorem 29 ord(Z) =
ord(C) = ordy»(Z). That is, for any parametric set U of Z, we have ordy(Z) <
ord(Z) and there exists one parametric set U* of Z such that ordy~(Z) = ord(Z).
As a consequence, ord(Z) = maxyordy(Z). O

The following well-known result about the adjoining indeterminates to the base
field will be used in this paper [19] B2].

Lemma 2.12. Let U = {uq,...,u.} C & be a set of -F-indeterminates, Iy a
prime d-ideal of dimension d and order h in F{Y}, and T = F(U) - Iy the d-ideal
generated by Ty in F{UY{Y}. Then T is a prime §-ideal in F{U){Y} of dimension
d and order h and TN F{Y} = Z,.
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2.4. A property on differential specialization. The following lemma is a key
result in algebraic elimination theory, which is used to develop the theory of Chow
form ([I5 pp.168-169], [43, p.176]). The result is originally given for homogenous
polynomials. We will show that it also holds for nonhomogenous polynomials.

Lemma 2.13. Let P, € F[U,Y]| (i = 1,...,m) be polynomials in the independent
indeterminates U = (uy,...,u;) and Y = (y1,...,yn). Let Y :‘yl, .oy T,), where
7, are elements of some extension field of F free from FU) If Py(U,Y) (i =
1,...,m) are algebraically dependent over F(U), then for any specialization U to
U= (uy,...,u,) € F", P(U,Y) (i =1,...,m) are algebraically dependent over F.

Proof. We sketch the proof for the case r = 1. Since Pi(u1,Y) (i = 1,...,m)
are algebraically dependent over F(uj), there exists some nonzero polynomial
f € F(u1)[z1,- - -, 2m] which vanishes for z; = P;(u;,Y). By clearing fractions when
necessary, we suppose f € Fluy,21,...,2m]|. Now specialize u; to uy in f; then we

have f(u1; P1(@1,Y), ..., Pn(u1,Y)) = 0. If f(@1;21,...,2m) # 0, it follows that
P;(u1,Y) (i = 1,...,m) are algebraically dependent over F. If f(@y;21,...,2m) =
0, then f(ugzl,...,zm) = (up — )t f1, where fl(ﬂl;z&...,zm) # 0. Since

f(ﬂl; Pl(ﬂhY), ey Pm(_ﬂl,_Y)) = O, we have fl(ﬂl; Pl(ﬂhY), ey Pm(ﬁlaY)) =0.
Thus, it follows that P;(U,Y) (¢ = 1,...,m) are algebraically dependent over F. [

To generalize the above result to the differential case, we need the following
lemma [32] p.35].

Lemma 2.14. Suppose F contains at least one nonconstant element. If G € F{u}
is a nonzero §-polynomial with order r, then for any nonconstant n € F, there exists
an element cy + c1n + can® + - -- 4+ ¢,.n” which does not annul G, where cy, . .., c,
are constants in F.

By arbitrary constants ay,...,as over F, we mean aq,...,as are constants in &,
which are algebraically independent over F. As a consequence of Lemma 2.14] we
have

Corollary 2.15. Suppose F contains at least one nonconstant element. If G €
F{u} is a nonzero §-polynomial with order r, then for any nonconstant n € F and
arbitrary constants ag, ..., a, over F, ag + a1n + asn? + -+ a,n" does not annul

G.

Proof. Suppose the contrary. Let ag, ..., a, be arbitrary constants over F in £ such
that G(ag + a1n+ -+ a,n") = 0, where n is a nonconstant in F. Since ag, ..., a,
are constants in & which are algebraically independent over F, g(aq,...,a,) =
G(ag+ain+---+a.n") is a polynomial in Flag, ..., a,]. Now by the hypothesis, ¢
is a zero polynomial. Thus, for any constants a; € F (i =0,...,7), g(ag,...,a,) =
G(ag+am+---+an") =0, which contradicts Lemma 2141 O

Now we prove the following result, which is crucial throughout the paper.

Theorem 2.16. Let {u1,...,u,} C &€ be a set of §-F-indeterminates, and P;(U,Y)
e F{U,Y} (i=1,...,m) d-polynomials in the §-F -indeterminates U = (uy,...,u)
and Y = (y1,...,yn). Let Y = (Y1,Ya,...,7,), wherey, € € are §-free from F(U).

1By saying Y is free from F(U) (resp. d-free from F(U)), we mean that U is a set of indeter-

minates over F(Y) (resp. d-indeterminates over F(Y)).
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If P;(U,Y) (i = 1,...,m) are 6-dependent over F(U), then for any specialization
UtoUin F, P;(U,Y)(i=1,...,m) are -F-dependent.

Proof. 1t suffices to prove the case r = 1. Denote u; by u. First, we suppose F
contains at least one nonconstant element.

Since P;(u,Y) (i = 1,...,m) are 6-dependent over F{(u), there exists a nonzero
G(z1,-..,2m) € Flu){z1,...,2m} such that G(P(uv,Y),..., Pn(u,Y)) = 0. We
can take G € F{u,z1,...,2m} by clearing denominators when necessary.

Since G(u, z1,...,2m) # 0, by Corollary 215 for any nonconstant € F and
arbitrary constants c,...,cs (s = ord(G,u)) over F(Y), G(u*,21,...,2m) # 0
where u* = >;_,cn'. Since G(u, Pi(u,Y),...,Pn(u,Y)) = 0 and u is a 6-
indeterminate over F(Y), when v is specialized to u*, we have G(u*, P, (u*,Y), ...,
Pn(u*,Y)) = 0. Regarding G as an algebraic polynomial over F in ¢; (i =0, ..., s)

and zi(j) (i=1,...,m;j > 0) which appear effectively, we have
G(co,...,cs,...,zgj),...) #0,

while

G(coy -y oy (P(u, Y)W, ..) = 0.
So Py(u*,Y))¥) (i =1,...,m;j > 0) are algebraically dependent over F(co, ..., cs),
by Lemma 213 when the ¢; are specialized to constants ¢; in F, the corre-
sponding P;(u*,Y)U) (i = 1,...,m) are algebraically dependent over F, where
u* =37 _,¢n'. Thatis, P;(u*,Y) (i =1,...,m) are 6-dependent over F.

To complete the proof, if w is a nonconstant, as above we take n = u, and special-
ize c; — 1 and other ¢; to zero. Otherwise we take 1 as an arbitrary nonconstant
and specialize ¢cg — @ and other ¢; to zero. Then in either case, u is specialized
to w, and we have completed the proof in the case where F contains at least one
nonconstant element.

If F consists of constant elements, take v € £ to be a d-indeterminate over
F(U,Y). Now we consider in the d-field F(v). Following the first case, for any spe-
cialization U to U C F, we can show that P;(U,Y) (i = 1,...,m) are §-dependent
over F(v). Since v is a d-indeterminate over F(Y), P;(U,Y) (i = 1,...,m) are
d-dependent over F. (]

From the proof above, we can obtain the following result easily:

Corollary 2.17. Let {uy,...,u,} C &€ be a set of §-F-indeterminates, and P;(U,Y)
e F{U,Y} (i = 1,...,m) d-polynomials in the d-indeterminates U = (uy,...,u,)
and Y = (y1, ..., Yn). Let Y = (§1,7s,---,U,), wherey, € & are free from F(U). If
the set (P;(U,Y))(@4) (i =1,...,m;j = 1,...,n;) are algebraically dependent over
F(U), then for any specialization U to U in F, (Py(U,Y))@i)(i = 1,...,m;j =
1,...,n;) are algebraically dependent over F.

Now we give an example to illustrate the proof of Theorem 2.16]

Example 2.18. In this example r = m =n =1 and F = Q(¢) with § = %. Let
P(u,y) = uy. Suppose that £ is a generic point of Z = sat(y”? — 2y) C Q(¢){y}
that is d-free from Q(t)(u). Let G(u;z) = u?2"? + 2u(u'? — wu)2" — 2u'u"2' 2" +
w2 + 2/ (=8u/? + 6un'u”) — 3uPu? 4+ 2udu” € Q(t){u, z}. Let y = £. Tt is easy to
verify that G(u;z) # 0 and G(u; P(u,y)) = 0. That is, P(u,7) is d-algebraic over
Q(¢)(u). We now proceed to show that when u is specialized to uw = 1, P(%,y) is
0-algebraic over Q(t).
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Clearly, G(u;z) = 0. In the algebraic case, following the proof of Lemma 2.13]
u—1 must be a factor of G(u; z). Removing all factors of the form u—1u, we obtain a
new d-polynomial G (u; z) which still satisfies G (u; P(u, 7)) = 0 and G1(@; z) # 0.
But, in the differential case, G(u; z) may not contain any factor involving v —u and
its derivatives.

Follow the steps in Theorem [2Z.16], and let ¢y, cq, co be arbitrary constants over
Q(t)(f) and n = t. Denote u* = CO+Clt+CQt Then G(u*;z) = —402'c3t3 —6cocit—

120002 —14c3t3 ey — 273t 3+ 42" 3 — —3c3c? — 30‘111%2 802t6+40002+z”20%—
362 cicat — 602 0102t2—|—12z 606102+24Z coc t 18coc3t? ey —24coclt3 2+42"2cieat+
62”0215202 + 82"c1t3c3 — 42'2" crea — 822 c2 — 24c1t5c3 + 22”0061 42" cBeq +

42”26§t2—|—22”ci’t—|—4z” 3t # 0 and G(u*; P(u*,y)) = 0. Regard G(u*; z) as an alge-
braic polynomial in Q(¢)[co, 1, co; 2, 2', 2"], denoted by g(co, ¢1,¢2; 2,2, 2”). Then
P(u*,7), P(u*,7)’, P(u*,5)"” are algebraically dependent over Q(t)(co,c1,¢2). So
the problem is converted to an algebraic one, and we can use Lemma 2.I3] to solve
it.

To be more precise, first, specialize co to 0; we obtain g(co,c1,0;2,2',2") =
223 422" o + 22" 3t — 6ot — 82/ — 3c3c? — 3cit? # 0 and g(co, c1, 0; P(co +
a1t ), Plcg + e1t, ), P(co + c1t, 7))’ ) 0. Then specialize ¢; to 0; we obtain
9(co,0,0;2,2',2") = 0 and g(co, c1,0;2,2',2") = g1, where g1 = 2% + 22"¢cy +
22" ¢t — 6epert — 82'cy — 3¢3 — 3c2t2. Clearly, g1(co,c1; P(co + c1t,y), P(co +
cat, ), P(co + c1t,y)"”) = 0. Specialize ¢; to 0 in g1, g, = 2% + 22"¢o — 3¢Z,
while g, (co; P(co,7), P(co, 7)), P(co,7)"”) = 0. Now specialize ¢g to @ = 1 in Gy; we
obtain gs(z,2',2") = 2% + 22" — 3. Clearly, g2(&,¢',€") = 0, where £ = P(u, 7).
Thus, P(w,y) is d-algebraic over Q(¢). Also, P(w,v), P(w,y) and P(u,7y)” are
algebraically dependent over Q(t).

3. INTERSECTION THEORY FOR GENERIC DIFFERENTIAL POLYNOMIALS

In this section, we will develop an intersection theory for generic J-polynomials
by proving Theorem [Tl As a consequence, the dimension conjecture is shown to
be true for generic §-polynomials. These results will also be used in Sections 4 and
6 to determine the order of the Chow form.

1. Generic dimension theorem. In this section, we will show that the dimen-
sion conjecture is valid for certain generic §-polynomials. To prove the dimension
conjecture in the general case, one simple idea is to generalize the following theorem
([19, p.43]) in algebra to the differential case.

Theorem 3.1. Let Z be a prime ideal of dimension d > 0 and f € F[Y]. If
(Z,f) # (1), then every prime component of V(Z, f) has dimension not less than
d — 1. Moreover, if f is not in I, then every prime component of V(Z, f) has
dimension d — 1.

Unfortunately, in the differential case, the above theorem does not hold. Ritt
gave the following counterexample.

Example 3.2 ([32 p.133]). p = v — 45 + ya(v1v5 — 4241)° € F{y1,92,93} and
f = ys, where F is the field of complex numbers. Then sat(p) is a prime d-ideal of
dimension two. But /[sat(p = [y1, Y2, y3], which is a prime d-ideal of dimension
Zero.
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It could also happen that when adding a d-polynomial to a prime J§-ideal to
which it does not belong, the dimension is still the same.

Example 3.3. Let p = yjy5 — y{v5. Then sat(p) = [p] : ¥/ is a prime J-ideal of
dimension one. It is clear that v} ¢ sat(p) and [sat(p), y5] = [v5] is still a prime
d-ideal of dimension one.

In this section, we will prove that Theorem [B.I] is valid for certain generic 4-
polynomials, which will lead to the solution of the dimension conjecture in these
generic cases.

Definition 3.4. Let m,, be the set of all §-monomials in F{Y} of order < s
and degree < r. Let U = {um}mem,, be a set of elements of £ that are §-F-
indeterminates. Then,

is called a generic §-polynomial of order s and degree r. If s = 0, then f is also
called a generic polynomial of degree r. A generic 0-hypersurface is the set of zeros
of a generic J-polynomial.

We use uy to denote the set of coefficients of a generic §-polynomial f and

(3.1) uy =us\ {uo},

where ug is the degree zero term of f. By saying that a point n € £" is free from
the pure d-extension field F(uy) over F, we mean uy are §-F (n)-indeterminates.

Throughout the paper, a generic d-polynomial is assumed to be of degree greater
than zero.

Lemma 3.5. Let T be a prime d-ideal in F{Y} with dimension d and f a generic
0-polynomial. Then Iy = [Z, f] is a prime 6-ideal in F(uy){Y,uo} with dimension
d, where Uy is defined in B). Furthermore, Ty N F(uys){uo} = {0} if and only if
d > 0.

Proof. Let £ = (&1,...,&,) be a generic point of Z over F that is free from F(uy)

and f = ug + fo, where fo = Y.  wu,m. We claim that (&1,...,&, —fo(§)) is
deg(m)>1

a generic point of Zy over F(uy). Thus, it follows that Zy is a prime d-ideal by
Lemma 211

Clearly, (&1,...,&n, —fo(€)) is a zero of Zy. Let g be any d-polynomial in
F(agp){yi,...,Yn,uo} which vanishes at (&1,...,&,, —fo(€)). Regarding ug as the
leader of f, suppose the pseudo remainder of g w.r.t. f is g;. Then we have

9 = g1, mod|[f],

where g1 € F(us){y1,...,yn}. From the above expression, g1(§) = 0. Since § is

also a generic point of F(uy) - Z over F(uy), g1 € F(uy)-Z. Thus, g € Iy, and it

follows that (&1,. .., &, —fo(€)) is a generic point of Zy over F(uy) and Zy is prime.
By Lemma 2.12]

dimZy = d.tr.deg F(up) (1. -+, &n, —f0(§))/F(uy)
d.tr.deg F(ug) (&, ..., &)/ F(ug)
= dtr.deg F(&, ..., &)/ F =d.
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Now consider the second part of the lemma. If d = 0, then dimZy = 0, so
To N F(ug){uo}t # {0}. Thus, if Zo N F(us){uo} = {0}, then d > 0. It remains to
show that if d > 0, then Zo N F(uy){uo} = {0}. Suppose the contrary; then there
exists a nonzero d-polynomial p(uy,ug) € Zo N F{uyr,uo}. So p(ay,—fo(§)) = 0.
Then, ¢ = — fo(£) is d-algebraic over F(uy). Denote the coefficient of any monomial
y; in f to be u;g. So for any fixed ¢ when w,qg is specialized to —1 and all the other
u € Uy specialized to zero, by Theorem 216, we conclude that ¢ = & (i =1,...,n)
is d-algebraic over F, which contradicts the fact that Z has a positive dimension.
So Iy N F{uy){uo} = {0}. O

Now, we will prove the first key result of this paper, which shows that by adding
a generic d-polynomial to a prime d-ideal, the new J-ideal is still prime and its
dimension decreases by one. This is generally not valid if the §-polynomial is not
generic, as shown in Examples and 3.3

Theorem 3.6. Let T be a prime §-ideal in F{Y} with dimension d and f a generic
0-polynomial. If d > 0, then Iy = [I, f] is a prime d-ideal in F(usp){Y} with
dimension d — 1. Also, if d =0, then I; is the unit ideal in F{us){Y}.

Proof. First, we consider the case d > 0. Let (&1, ...,&,) be a generic point of Z over
F that is free from the pure §-extension field F(uy) over F and f = ug + fo where
fo= Y upm. By LemmalBIl Zy = [Z, f] C F(us){Y,uo} is a prime d-ideal,
deg(m)>1

where Uy is defined in (BI)). By LemmaB.5] Zo N F(us){uo} = {0}. SoZ; = [Zp] in
F{up){Y} is not the unit ideal, for if not, 1 € Z;. Then there exist é-polynomials
9 € T C F{Y}, Hij, Gy € F(us){Y} such that 1 =3, Hi;g? + X, Grf®. By
clearing denominators in the above expression, we obtain a nonzero d-polynomial
in Zo N F{uy}, a contradiction.

Now we claim that Z; is prime and 7y N F{us){Y,uo} = Zo. Suppose g,h €
F{up){Y} and gh € ;. By collecting denominators, there exist Dq, Dy € F{uy}
such that Dyg, Doh € F{uy, Y}, and (D1g) - (D2h) = D1D2(gh) € Z; still holds.
Similar to the procedure above, we can find a nonzero D € F{uy} such that
D - (D1g) - (D2h) € Iy. Since g is prime and Zo N F(us){uo} = {0}, D1g € I
or Dyh € Ty. It follows that g € 73 or h € Z;. Since Z; is not the unit ideal, 7y
is prime. Also, for any g € Z; N F(us){Y, uo}, there exists some D € F{us} such
that Dg € 1y, so g € 1. Thus, Z; N f(ﬁf>{Y,U0} =Tp.

Suppose &1, ..., &q are d-independent over F. Then, {y1,...,y4} is a parametric
set of Z. Thus each y44;(: = 1,...,n—d) is d-dependent with y1, ..., yq modulo Z;,
since Z C Z;. By Lemma[3.5] dimZy = d. Then ug,y1,...,yq are 6-dependent mod-
ulo Zo, so {y1, ..., ya4} is 6-dependent modulo Z;. Thus dimZ; < d—1. Now we claim
Y1, ---,Yq—1 are d-independent modulo Z;, which proves dimZ; = d — 1. Suppose
to the contrary that yi,...,yq—1 are d-dependent modulo Z;. Thus there exists a
nonzero d-polynomial p(y1,...,ya—1) € Z1. Takep € F{Uy,y1,...,Ya—1,uo}. Then

p(uy, &1, 5801, —fo(§)) = 0.

That is, &1,...,&4—1, —fo(§) are d-dependent over F(uy). Now we specialize uqo
to —1, and the other v € Uy to zero, where ugy refers to the coefficient of the
monomial y4 in f. Then —fy(&) is specialized to &;. By Theorem &,...,&
are d-dependent over F, which is a contradiction. So in this case dimZ; = d — 1.

Licensed to Academia Sinica. Prepared on Fri Jul 5 06:12:57 EDT 2013 for download from IP 159.226.25.243.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



DIFFERENTIAL CHOW FORM 4591

Now, it remains to show the case d = 0. Since d = 0, by Lemma B.5, Zg N
F(ag){uo} # {0}. So Zo N F(uy) # {0}, and consequently Z; = [Zo] in F(us){Y}
is the unit ideal. ([l

A special case of Theorem is particularly interesting, and its algebraic coun-
terpart is often listed as a theorem in algebraic geometry textbooks [16] p.54, p.110].

Theorem 3.7. Let Z be a prime d-ideal in F{Y} with dimension d > 0. Let
{ug,u1,...,un} C & be a set of §-F-indeterminates. Then I; = [T,ug + w1y1 +
<o upyy) 18 a prime 0-ideal in F{ug, uq, . .., un){Y} with dimension d — 1.

Theorem is also valid for a wider class of d-polynomials. A J-polynomial
f in Y is said to be quasi-generic if 1) the coefficients of f as a §-polynomial in
Y1, -, Yn are 6-indeterminates and 2) in addition to the degree zero term, for each
1 <4 <mn, f also contains at least one J-monomial in F{y;} \ F. For instance,
f = up + ury1 + uay1y2 is not quasi-generic, because f contains no monomials in

Fly2b \ F.
The proof for Theorem can be easily adapted to prove the following result.

Corollary 3.8. Let I be a prime d-ideal in F{Y} with dimension d and f a quasi-
generic d-polynomial with uy as the set of coefficients. If d > 0, then I, = [Z, f] is
a prime 0-ideal in F{up){Y} with dimension d — 1. Also, if d =0, then I is the
unit ideal in F(ug){Y}.

By independent generic (resp. quasi-generic) §-polynomials, we mean that the
coefficients of all of them are é-independent over F. As a direct consequence, we
can show that the dimension conjecture is valid for quasi-generic J-polynomials.

Theorem 3.9 (Generic Dimension Theorem). Let fi,..., f, be independent quasi-
generic d-polynomials in F(u){Y} with r < n and u the set of coefficients of all
fi- Then [f1,..., fr] C F(u){Y} is a prime §-ideal with dimension n —r. Also, if
r>n, [f1,..., fr] is the unit ideal.

Proof. We prove the theorem by induction. Let Z = [0]. When r = 1, by Corollary
B [f1] is prime with dimension n — 1. Assuming this holds for r — 1, now consider
the case r < n. By the hypothesis, [f1,..., fr—1] is a prime J-ideal with dimension
n—r+1. Note that the coefficients of f, are é-indeterminates over F(uy,,...,uy,_,).
Using Corollary B8 again, [fi,..., f-] is a prime é-ideal with dimension n—r. When
r > n, since [fi,..., fn] is of dimension zero, by Corollary B8 [f1,..., fr] is the
unit ideal. |

3.2. Order of a system of generic differential polynomials. In this section,
we consider the order of the intersection of a d-variety by a generic d-hypersurface.
Before proving the main result, we give a series of lemmas and theorems.

Lemma 3.10. Let T be a prime 0-ideal in F{Y} with dimension n — 1. Suppose
{f} is a characteristic set of T w.r.t. some ranking Z and f is irreducible. Then
for any other ranking %, {f} is also a characteristic set of T.

Proof. Denote f to be f under the ranking #. By Theorem 22 Z = sat(f) and
T = sat(f) are prime d-ideals with f and f as characteristic sets, respectively. We
need to show that Z = Z. Let S be the separant of f. Then for g € sat(f), we have
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Smg=hf+hif 4+ -+ hef®) for m,s € N. Then, S™g € sat(f). Since sat(f) is
prime, we need only show that S is not in sat(f). Suppose the contrary, S € sat(f).
Since S is partially reduced w.r.t. f, we have S = hf for a §-polynomial h, which

is impossible since S = %. So T C Z. Similarly, we can prove that Z O Z, thus
I=1. |

If S is any set of §-polynomials in E{Y}, then its set of zeros in £™ is called the
d-variety of S, still denoted by V(S). The following lemma generalizes a result in
[8) p.5] to the case of positive dimensions.

Lemma 3.11. Let the §-variety of a system S of §-polynomials in F{Y} have a
component V' of dimension d and order h. Let S be obtained from S by replacing
y%k) by y£k+1)(k =0,1,...) in all of the §-polynomials of S. Then the §-variety
ofg has a component V of dimension d and order hy such that h < hy < h + 1.
Moreover, if there exists a parametric set U not containing yy such that the relative
order of (V) w.r.t. U is h, then the order of V is h+ 1; otherwise, the order of V.
is h. In particular, if d = 0, then ord(V) = h + 1.

Proof. Let (&1,...,&,) be a generic point of V and Z = I(V) € F{Y}. It is clear
that [z — &] is a prime d-ideal in F(&1,...,&){z}. Let n be a generic point
of [z — &]. Then (n,&,...,&,) is a point of S. Suppose this point lies in a
component V' of S, which has a generic point (71, ...,1,). Then (n1,72,...,7,) is
specialized to (n,&a,...,&,), and correspondingly (0}, n2,...,n,) is specialized to
(&1,&2,...,&,). Since (&1,...,&,) is a generic point of V and (n],n2,...,m,) is a
zero of S, the latter specialization is generic, that is, (n],72,...,m,) is a generic
point of V. We claim that any parametric set U of Z is a parametric set of I(V),
and ordyZ < ordyl(V) < ordyZ + 1, which follows that dim(V) = d, and by

Theorem [ZTT] h < ord(V) < h+1. Let U be any parametric set of Z. We consider
the following two cases.

Case 1: y; ¢ U. Suppose U is the set of ya,...,y4+1. By Corollary 2.8 we have

y2,<~-,yd+1I = tr'deg‘/—:<€17 e agda gd-'rla e a€n>/]:<§2? et 7§d+1>'
Since &, ...,&441 are d-independent over F, mg,...,7M4+1 must be d-independent

over F, ie. I(V)nF{U} = {0}.
tr-deg]:<771a7727 s 777n>/f<7725 R 77d+1>

ord

Z tr'deg]:<n7£2a"'7§n>/f<§27"'7§d+1>
(for (n1,7m2,...,mn) can be specialized to (n,&a,...,&))
= tr.deg F(&1,...,&n)/F{&a, ... Ear1) +tr.deg F &y, ., &n) M)/ F{&r, ..., n)
= Ord927-~7yd+1l-+ 1
and

tr.deg F(n1y -« oy n) /F(M2y <+ s Nat1)
< 1+ trdeg F(ny,m2 s mn)/F (N2, - - Mdr1)
= 14 ordy,,. 7z

HYd+17

so tr.deg F(ni, ..., M)/ F(n2s ... mas1) = 1+ ordy,, . y,,, T < co. Thus V is of

dimension d and {y,...,ya+1} is a parametric set of I(V'). Moreover, the relative
order of I(V)) w.r.t. yo,...,Yq41 is ordy,, .y, T + 1.
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Case 2: y; € U. Suppose U = {y1,...,yq}. Then by Corollary 2.8 ordyZ =
ordy, .y, I =tr.deg F(&i, ..., &n)/F (&1, .., &a). We have seen that (1],72,...,7n)
is a generic point of V. Since tr.deg F(&1,...,&n) () /F (&1, ..., &n) = 1 and (91,12,

..,Mn) can be specialized to (n,&a,...,&,), m is algebraically independent over

‘F<77/15772a ce ,T]n> So

tr.deg F(n1, ., M) /F (1, - Na)
trdegf(nl)<77/177727a77n>/~7:(771)<7717772aa7ld>
tr~degf<n/177727-~-777n>/]:<77/1>7]27-'-777d>

(for tr.deg F(ny, ) (m)/F (0, - sm) = 1)
T

= Ordylv--<7yd
Since (71, ...,14) can be specialized to (n,&a,...,&4) over F, d > d.tr.deg F(n,

coyna)/F > ditrdeg F(n, o, ..., Eq)/F > d.tr.deg F(&q1,&a,...,&4)/F = d. Since
tr.deg F(n1, ..., nn)/F(m, ..., na) <oo, we have d.tr.deg F(n1,...,0d, ..., nn)/F =

d. Thus in this case, dim(V) =d, and U = {y1,...,ya} is a parametric set of I(V)

with ordy, . ., I(V) =ordy, .. 47T

Considering the two cases together, we can see dim(V) = d. Also, by Theo-
rem 21Tl h < ord(V) < h + 1. Moreover, if there exists a parametric set U not
containing y; such that the relative order of I(V) w.r.t. U is h, then the order of
V is h + 1; otherwise, the order of V is h. In particular, if d = 0, then y; ¢ U = ().

From Case 1, ord(V) =ord(V) +1=h+ 1. O

Let G C & be a d-extension field of F. By a §-F-isomorphism of G, we mean a
d-isomorphic mapping of G onto a é-field G’ C & such that (a) G’ is an extension
of F, (b) the J-isomorphic mapping leaves each element of F invariant. By means
of well-ordering methods, it is easy to show that a J-F-isomorphism of G can be
extended to a §-F-automorphism of £. We will use the following result regarding
d-isomorphisms.

Theorem 3.12 ([20]). Let G C & be a -extension field of F andy € G. A necessary
and sufficient condition that v be a primitive element of G, i.e. G = F(~), is that
no F-isomorphism of G other than the identity leaves v invariant.

The following theorem as well as Theorem [3.6] prove Theorem [T

Theorem 3.13. Let Z be a prime 6-F-ideal with dimension d > 0 and order h,
and [ a generic §-polynomial of order s. Then I; = [Z, f] is a prime §-ideal in
Flup{Y} with dimension d — 1 and order h + s.

Proof. By Theorem B.6, Z; is prime with dimension d — 1. Now we prove the order
of 77 is h + s.

Let A be a characteristic set of Z w.r.t. an orderly ranking &Z with y1,...,y4
as a parametric set. By Theorem [Z8] ord(.A) = h. Suppose £ = (&1,...,&,) is
a generic point of Z that is free from the pure extension field F(uy) over F. Let

f:u0+f0a where fO = Z Umm. Let IO = [Iv.ﬂ in ]:<ﬁf>{yla"'7yn;u0}v
deg(m)>1

where Uy is defined in (1J). By Lemma B Z; is a prime d-ideal of dimension d
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with a generic zero (&1, ...,&, —fo(§)), and ug is 6-independent modulo Zy. Zy and
7Z: have such relations: Any characteristic set of Zy with ug in the parametric set
is a characteristic set of Z;, and conversely, any characteristic set of Z;, by clearing
denominators in F(uy){uo} when necessary, is a characteristic set of Zy with ug in
the parametric set. By Theorem 2TT] we have ord(Z;) < ord(Zp).

We claim that ord(Zy) < h + s. As a consequence, ord(Z;) < h + s. To prove
this claim, let I(gi) = [Z, u(()i) +fol(i=0,...,5) in Fag){yi,...,Yn,uo}. Similar to
the proof of Lemma [3.5] I(()Z) is a prime é-ideal of dimension d. Let f be the pseudo
remainder of u(()s) + fo w.r.t. A under the ranking #Z. Clearly, ord(f,ug) = s. It
is obvious that for some orderly ranking, {A, f} is a characteristic set of Iés) with
Y1,---,Yq as a parametric set. So ord(I(()s)) = h + s. Using Lemma [B.17] s times,
we have ord(Zy) < ord(I(gl)) <. < ord(IéS)) =h+s.

Now, it suffices to show ord(Z;) > h+s. Let w = u0+2?:1 Ej:o uijygj) be anew
d-indeterminate. Let ug, be the set of coefficients of g = w+>_7" ;. Z;:o uijyi(]) +
f1 regarded as a J-polynomial in w and Y, where f; is the nonlinear part of f
in Y. We denote F; = F(uy). Then I, = [Z,g] in Fi{y1,...,Yn,w} is a prime
d-ideal with a generic point (&1,...,&,,7), where vy = =37 ;. 327 uijgi(j) -
fi(&1, ..., &,). We claim that « is a primitive element of F1(&1,...,&q)(€at1,- -+ &n)
over Fi(&1,...,&q4). By Theorem BI2] it suffices to show that no Fi(&q,..., &)
isomorphism of Fi(&1,...,€4){€a+1,---,&n) other than the identity leaves ~ in-
variant. Let ¢ be any §-F1(&1,. .., &q)-isomorphism of F1{(&1,...,&a){Eav1, -+, En)

which leaves v invariant, and ¢(€444) = a4 (¢ = 1,...,n—d). Since each 44, (i =
1,...,n—d) is d-algebraic over F(1,...,&y) and ¢ is an isomorphism leaving each
element of F({1,...,&,) invariant, we can see that each n44; (1 = 1,...,n—d) is also

0-algebraic over F(&1,...,&q). So, Nati (i =1,...,n —d) are also free from F(uy).
From ¢(y) = v, we have =371 ;. >°°_, win? = il € nar, - ) =
= a1 2g—0 uijgi(j) — filé1, . €a,€a01, - - -, En), which can be rewritten as

ST 3 ue?” =) + fa€r &) = AilEr - Eaags ) = 0.

i=d+1 j=0

Since uy are d-indeterminates over F(&1,...,&n, Na+1,---,7n), We have & —n; =
0(t=d+1,...,n). So ¢ must be the identity map and the claim follows.
Since F1{&1, -y €ay Eatty - - &n) = F1(&1y ..., €a) (), v is d-algebraic over Fy (&,
.., &) and each 44y € Fi(61,..., &) (M@ =1,...,n —d). Let R(&,...,&q,w)
be an irreducible §-polynomial in F1(&1, ..., &a){w} annulling v of the lowest
order. By clearing denominators when necessary, suppose R(y1,...,Yq, w) is an
irreducible d-polynomial in Fi{y1,...,yq, w}. Clearly, R(yi,...,yq,w) € Zo. Also,
there exist A; € Zy with the form A; = Pi(y1,...,Yd, W)Yar: + Qi(y1,- .., Yd, w)
(i =1,...,n —d), which are reduced w.r.t. R. Since Zo N F1{y1,...,yq,w} is a
d-dimensional prime d-ideal, by Lemma [BI0, { R} is its characteristic set w.r.t. any
ranking. So for the elimination ranking 13 < -+ < yg < W < Yg4+1 < -+ < Yn, a
characteristic set of Zo is {R(y1, - - -, ya, w), A1, ..., Apn_aq}. Since F1(&1,...,&n,7) =
Fi(&i,..., &), by Corollary 28 ord,, . ,,Z> = ordy,, . ,,(Z) = ord(A) = h. Thus,
ord(R,w) = h.
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Let U= {u;; : i=1,...,d;5 =0,...,s}. In A {U){w,y1,...,yn}, I is also
prime with R(y1,...,y4,w), A1,...,An_q as a characteristic set w.r.t. the elimina-
tion ranking y; < -+ < yg < W < Yg41 < - < Yn. Let

¢:]:1<U>{y1,"'aynvw} — -7:1<U>{y1,"',ynvu0}',
w wo + 3y Y5 uigyl”
Yi Yi
be a d-homomorphism over F;(U). Clearly, this is a d-isomorphism which maps
T5 to Zy. It is obvious that Zy has ¢(R),#(A1),...,¢(A,—q) as a characteristic
set w.r.t. the elimination ranking y3 < -+ < yg < up < Yg41 < -+ < yn with
tk(p(A;)) = yari(i = 1,...,n — d). We claim that ord(¢(R),y1) > h +s. If
ord(R,y1) = h + s, rewrite R in the form R = °, )1 pv(y1,- .-, ya)tbu(w) +
p(y1,--.,Ya), where ¢, (w) are monomials in w and its derivatives. Then

d s
SR = > poyr ) luo + > > wiy) + oy )

Yol =1 ;=0
= > poW- - va)vu(wo) + Py, - ya)
P #1
+ terms involving w;;(1 = 1,...,d;j =0,...,s) and their derivatives.

Clearly, in this case we have ord(¢(R),y1) > max{ord(p,,y1),ord(p,y1)} = ord(R,
y1) > h+s. If ord(R,y1) < h + s, rewrite R as a polynomial in w(®, that is, R =

L(w™) Ly (w™) 1 Ty, Then (R) = ¢(I)[(uo+ 225, Yo wizyt ) M)+

O(I1-1)[(wo + Y1y 35 g wigyy” )M -+ B(1o). Since ord(@(11), 1) < h+ s
(k=0,...,1), we have exactly ord(¢(R),y1) = h + s. Thus, consider the two cases
together, ord(¢(R),y1) > h + s.

Since ZoNF1 (U){y1, - .-, Ya, uo} is a d-dimensional prime d-ideal, by Lemma 310l
{#(R)} is its characteristic set w.r.t. any ranking, in particular, for the elimination
ranking ug < yo < -+ < yg < y1. So w.r.t. the elimination ranking ug < yo < -+ <
Yd <Y1 < Yar1 < < Yn, {O(R), (A1), ..., ¢(An_q)} is a characteristic set of Zy,
thus a characteristic set of Z;. By Theorem 2111 ord(Zy) > ordy,,.. 4,71 > h + s.

Thus, the order of Z; is h + s. a

As a consequence, Theorem [3.7] can be strengthened as follows.

Theorem 3.14. Let Z be a prime d-ideal in F{Y} with dimension d > 0 and
order h. Let {ug,uy,...,u,} C E be a set of 6-F-indeterminates. Then I; =
[Z,ug+uiyr+- - -+ unyn] is a prime §-ideal in F(ug, uy, ..., un){Y} with dimension
d —1 and order h.

As another consequence, the dimension theorem for generic J-polynomials can
be strengthened as follows.

Theorem 3.15. Let f1,..., fr(r < n) be independent generic §-polynomials with
each f; of order s;. Then [fi,..., f:] is a prime §-ideal with dimension n —r and
order Y1 s; over Fluy,,...,uy,).

Proof. We will prove the theorem by induction on r. Let Z = [0] C F{Y}. Clearly,
7 is a prime d-ideal of dimension n and order 0. For r = 1, by Theorem B.13]
[fi] = [Z, f1] is a prime é-ideal of dimension n — 1 and order s;. So the assertion
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holds for r = 1. Now suppose the assertion holds for r — 1; we now prove it for r.
By the hypothesis, Z,_1 = [f1,..., fr—1] is a prime d-ideal of dimension n —r + 1

and order Z:;ll s; over F(uy,,...,uy, ). Since fi,..., f, are independent generic
d-polynomials, using Theorem B3] again, Z,, = [fi,..., fr] is a prime §-ideal of
dimension n — r and order Y ._,s; over F(uy,,...,uy ). Thus, the theorem is
proved. O

Remark 3.16. When f is a quasi-generic d-polynomial, Theorem B.I3] may not
be true. A counterexample is as follows. Let Z = [y2,...,yn] € F{Y} and f =
ug+uryr +uzyd +- - - +unyl . Clearly, f is a quasi-generic é-polynomial and [Z, f] is
a prime d-ideal of dimension 0. But ord([Z, f]) = ord(Z) = 0 # ord(Z) +ord(f) = 2.

4. CHOW FORM FOR AN IRREDUCIBLE DIFFERENTIAL VARIETY

In this section, we define the differential Chow form and establish its properties
by proving Theorem

4.1. Definition of the differential Chow form. Throughout this section, we
assume that V' C €™ is an irreducible §-F-variety with dimension d and Z = I(V') C
F{Y}. Let

(4.1) u = {u;(t=0,...,d;5=0,...,n)}

be (d+ 1)(n + 1) §-F-indeterminates in £.

By saying that a point n € £ is free from the pure J-extension field F(u) over
F, we mean U are d-indeterminates over F(n). Let & = (&1,...,&,) be a generic
point of V' which is free from F(u) and ¢y, (1, ..., (4 elements of F(u,&1, ...,&u):

(4.2) (o == Uopp(0=0,....d),
p=1
where
u = {u;(=0,...,d;j=1,...,n)}

We will show that the §-transcendence degree of (g, ..., (s over F(u) is d.

Lemma 4.1. d.tr.deg F(u){Co, ..., Cq)/F(u) = d. Furthermore, ifd >0, (1,...,(4
are d-independent over F(u).

Proof. By Lemma 212 d.tr.deg F{u){&1,...,&,)/F(u) = d. Since the d + 1 ele-
ments (o, . .., (q belong to F(u,&,...,&,), they are d-dependent over F(u). Then,
we have d.tr.deg F(u){Co, ..., Cq)/F(u) < d. Thus, if d = 0, we have

d.tr.deg F{u){Cp,...,Cq)/F{u) = 0.

Now, suppose d > 0. We claim that (1, ..., (4 are d-independent over F{u), thus
it follows that d.tr.deg F{u){((,...,Cs)/F{u) = d. Suppose the contrary. Since
G € F{u, &, ..., &}, when we specialize u;; to —dg,; (j =1,...,n, ki € {1,...,n}),
¢; will be specialized to &,. Then from Theorem 216 we conclude that &, ..., &k,
are -dependent over F. Since we can choose ki, ..., kq so that &, ,..., &, are J-
independent over F, it amounts to a contradiction. Thus the claim is proved. [
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Let I be the prime d-ideal in the §-polynomial ring R = F(u){zo, ..., 24}
having ¢ = ({o,...,Ca) as a generic point. By Lemma A1 the dimension of I¢ is
d. By Theorem 2] the characteristic set of I w.r.t. any ranking consists of an

irreducible é-polynomial f(zo,...,24) in R and

(4.3) I, = sat(f).

Since the coefficients of f(zo, ..., 2q) are elements in F(u), without loss of gener-
ality, we assume f(u; zo, ..., 24) is an irreducible é-polynomial in F{u; zp, ..., 24}
We shall subsequently replace {zo,...,z4} by {uoo,...,ud} C U, and obtain

(44) F(U.o, Ug,..., U.d) = f(u; U0, - - - ,udo) S }'{ﬁ},

where U is from (1) and u; = (w40, ..., Uin) for i =0,...,d.

Definition 4.2 (Differential Chow form). The d-polynomial defined in (@A) is
called the differential Chow form of V or the prime d-ideal Z = I(V').

A generic §-hyperplane is the zero set of ug + u1y1 + -+ - + unyn = 0, where u;
are 0-F-indeterminates. The following result shows that the differential Chow form
can be obtained by intersecting Z with d + 1 generic é-hyperplanes.

Lemma 4.3. Using the notation introduced above, let T =1(V) and
(4.5) Pi = wio +uiny1 + - + Uinyn (1 =0,...,d),

where u;j are from @I). Then [Z,Py,P1,...,P4] is a prime d-ideal in F (u){uoo, w10,
ce, U0y YLy - >yn} and [I,P(),]PH, cee ,]Pd] ﬂ]:<u>{uO0,U1(), R ,ud()} = sat(f).

Proof. Similar to the proof of Lemma [B.5] it is easy to show that [Z, Py, Py, ..., P4]
is a prime d-ideal with a generic zero ((, ). Denote [Z,Py, Py, ..., P4] by I¢ ¢. Then,
Ic e N F(u){uoo, U10, - - -, Ugo} is a prime d-ideal with a generic zero ¢, which implies
]IQ&ﬁf{u>{uoo,u10,...,ud0} ZHC :sat(f). U

In the following context, we will denote [Z,Py,P1,...,Pq] by L.

Remark 4.4. From Lemma 3] we have two observations. First, the Chow form for
a d-variety is independent of the generic point used in (£.2]). The é-ideals I and I ¢
are also independent of the choice of £. Second, we can compute the Chow form of V'
with the d-elimination algorithms [11 [7], [32] 39, [14] if we know a set of finitely many
generating J-polynomials for V. Furthermore, given a characteristic set A of I(V),
we can also compute its Chow form. Indeed, from Lemmal4.3] it suffices to compute
a characteristic set of I ¢ w.r.t. a ranking U < Y (elimination ranking between
elements of U = {uqo,...,uq0} and Y. It is clear that I has a characteristic
set {A,Py,...,Pq} wrt. a ranking Y « U. Then using the algorithms given
by Boulier et al. [I] and Golubitsky et al. [14] for transforming a characteristic
decomposition of a radical d-ideal from one ranking to another, we can obtain the
Chow form.

Example 4.5. Consider the case n = 1. By Theorem 2.9, a prime d-ideal in
F{y1} is of the form sat(p) where p € F{y:1} is irreducible. The zero set of sat(p)
is an irreducible §-F-variety in the affine line: AY(£). Let Py = ugp + up1y1 and
ug = (uoo,up1). Then the Chow form of sat(p) is F(ug) = ugop(—Z—g;), where
d is a natural number such that F'(up) is an irreducible d-polynomial in F{ug}.
For instance, let p = (y})?> — 4y1. Then the Chow form of sat(p) is F(ug) =

2 7 \2 / / /I \2,,2 3
ugy (upo) — 2uo1tup UooUoo + (Uo1) Ugo + 4up too-
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Example 4.6. If V is an irreducible é-variety of dimension n—1 and its correspond-
ing prime d-ideal is Z = sat(p) C F{Y}, then its Chow form is F(up,...,up_1) =

Dmp(%, ey %’), where
Uo1 Uo2 Tt Ugn
D= U1 U2 Tt Uln
Up—1,1 Un-—-1,2 =-°° Un—1,n
and D;(: = 1,...,n) is the determinant of the matrix formed by replacing the i-
th column of D by the column vector (—ugg, —u10,- .-, —Un_1,0)7, and m is the
minimal integer such that Dmp(%, e %) € F{u;upo, - .-, Udo}-

Example 4.7. Let V be the irreducible §-variety corresponding to [y] + 1,y5] €
Q) {y1,y2}. It is of dimension zero and the Chow form of V' is F'(ug) = uoaug; ugo—+
g wo1to2 — 2u02 (U )? — Uo2u( Uy — UpaUo1UGy — UhaUdy — Uy Ugatoo -+ 2UpaUo1 U +
UPeUo1 UG + UGy UpaUoo, Where ug = (ugo, uo1, Uo2)-

4.2. The order of the differential Chow form. In this section, we will show
that the order of the differential Chow form is the same as that of the corresponding
0-variety. Before this, we give the following lemmas.

Lemma 4.8. Let (o,(1,-..,Cq be defined in [E2), and f(u;ugo, ..., uq) be the
Chow form of V. Then for any p(u;ugo, - - ., ud0) € F{u){ugg, ..., udo} with ord(f)
= ord(p) such that p(u; (o, . . .,Cq) =0, we have p(u; ugo, . - . , ugo) = f (@ ugo, - - - , Udo)
h(u; ugo, - - -, udo), where h(w;ugg, - .., uqo) s in F{a){uoo, ..., Udo}-

Proof. Since {f} is the characteristic set of I w.r.t. an orderly ranking, and p € I¢
with ord(f) = ord(p), then I''p = fh for some m € N. Since f is irreducible, we
can see that f divides p. ]

The Chow form f(u;ugg, ..., uqd0) has certain symmetric properties as shown by
the following results.

Lemma 4.9. Let F(ug,uy,...,uy) be the Chow form of an irreducible §-F -variety

V and F*(ug, uy,..., ug) be obtained from F by interchanging u, and u.. Then
F* and F differ at most by a sign. Furthermore, ord(F,u;;) (i = 0,...,d;j =
0,1,...,n) are the same for all u;; occurring in F. In particular, w; (i =0,...,d)

appear effectively in F. A necessary and sufficient condition for some u;; (j > 0)
not occurring effectively in F is y; € I(V).

Proof. Consider the §-automorphism ¢ of F(1,..., &) (u) over F(&, ..., &):

Uijj, { # P, T,
¢(u13) - urj - Urj, 1= P,
Upj, ©=T.
Of course,
Ciu { 7é P T,
PG)=¢ =9 Gy i=p,
Co, ©1=T.
Then ¢(f(u;C0a"'7<p7"'7CTa"'7<d)) = f(u*;coa"'?CTa AR Cpa "'7Cd) =0. In-
stead of f(u; 2, ..., 24), we obtain another §-polynomial p(u; 2o, . .., zq) = f(u*; zo,
ceyZryee ey Zpy oo, Z4) € Le. Since the two d-polynomials f and p have the same or-

der and degree, and as algebraic polynomials they have the same content, by Lemma
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B8 f(u*;520,..., %0, ..., %p, ..., 2q) can only differ by a sign with f(u; zo,...,2,,...,
Zry...y24). So we conclude that F'(ug,uy,...,ug) produces at most a change of
sign if we interchange u, with u,. In particular, each w;y appears effectively in
F, and ord(F,u;) are the same for all i = 0,1,...,d. Suppose ord(F,u;p) = s.
For j # 0, we consider ord(F,u;;). If ord(F,u;;) = l > 5, then we differentiate

f(u;Co,-..,¢q) = 0 on both sides w.r.t. u() Thus (u; oy .., Cqa) = 0, which

ou (j)
amounts to a contradiction by Lemma L8 If ord(F uz]) = l < s, then we differenti-
ate f(u; (0, .++,Ca) = 0 on both sides w.r.t. u;; (*) (u; Cos---5Ca) - (&) =

0. Smce ( G0y .-+, Ca) # 0, we have §; = 0. Also, Yj 6 H(V) = =0

is free of uij = 885) =0 for all k € ZT <= wu;; does not appear in F. From
]

the above, if u;; occurs effectively in F', ord(F, u;;) = s, which completes the theo-

rem. (Il

The order of the Chow form is defined to be ord(f) = ord(F) = ord(f, u;0) for
any ¢ € {0,...,d}. By Lemma 9 ord(f) is equal to ord(F,u,;) for those wu;;
occurring in F.

The following lemma gives a property for the d-ideal I¢ ¢ defined in Lemma 3]

Lemma 4.10. Let F(ug,uy,...,ug) = f(u; ugo, u1o, - - -, udgo) be the Chow form of
a prime §-F-ideal T and s = ord(f). Then

af af
A:{fasjyl (s)a"'anyn_W}
Oug, ouy,,

is a characteristic set of the prime §-ideal I ¢ = [Z,P, Py, ..., Pg] in F{u){ugo, u10,
Sy Udo, Y} w.r.t. the elimination ranking ugo < -+ < ugp < Y1 < -+ < Yn, where
Sp =2

8ugf)) ’

Proof. From Lemma [£3] 1. ¢ is a prime d-ideal of dimension d with a generic point

(Coy-++Cas &1y -+ €n). From Lemma Bl wig, ..., uq0 is a parametric set of I ..
If we differentiate f(u 'Co,...,Cd) = 0 w.r.t. u(();) (p = 1,---,n), then we have
» ( 7 —£,5; =0, Where ) and S are obtained by replacing (uoo, .oy Ugo) with
(Co,...,Cd) in ﬁ and Sj, respectively. So T, = Sy, — % € I¢¢. Since f
is irreducible, we have Sy & Ice. Also note that T; is linear 1n y;. A must be a
characteristic Seﬂg of I¢ ¢ wr.t. the elimination ranking ugo < -+ < ugo < y1 <

* = Yn. O

Now we give the first main property of the differential Chow form.

Theorem 4.11. LetZ be a prime 0-F -ideal with dimension d, and f(u; ugg, u1g, - - - ,
ugo) its Chow form. Then ord(f) = ord(Z).

Proof. Use the notation &, (;, and P; introduced in (£2) and (@IH). Let Zy =
[Z,Pq,...,P4] C F(uy,...,uq){Y}. By Theorem B.I4l Z; is a prime J-ideal with
dimension 0 and the same order as Z.

Let 77 = [I Py, ... Pd] [Id,]Po] C]:<U.1,...,ud;U()1,.. u0n>{u00,y1,...7yn}
From Lemma 410, A = {f, Sfy1 — s SFyn — } is a characteristic set

af of
6()"" a()

2Here A is a 6-chain. See Remark 223
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of I¢¢. By Lemma Bl wq0,...,uq is a parametric set of I . So A is also a
characteristic set of Z; w.r.t. the elimination ranking ugg < y1 < -+ < ¥y,. Since
dim(Z;) = 0, from Corollary 210, we have ord(Z;) = ord(A) = ord(f).

On the other hand, if (1,...,7n,) is a generic point of Zy, then (n1,...,1,,() is
a generic point of 7, with ¢ = — Y7 ug;n; and dim(Z;) = 0. Clearly, uox(k =
1,...,n) are d-independent over F(uy,...,uq,M,...,Mn). Denote F{uy,...,uq,
UQ1, - - -, Ugn) by F1. So for a sufficiently large ¢,

wr, (t) = ord(Zy)
@) FG) . ;= . q
tr.deg Fi(n”, ¢V ri=1,. . n;j <t) /R
tr.degfl(nz(j) ci=1,...,n;5 < t)/]-'l
= tr.degf(ul,...,ud>(77§j) ci=1,...,m;5 <t)/Flug,...,ug)
= wr,(t) = ord(Zy).

Thus, ord(Z;) = ord(Zy) = ord(Z), and consequently, ord(Z) = ord(f). O

As a consequence, we can give an equivalent definition for the order of a prime
6-ideal using Chow forms.

Definition 4.12. Let Z be a prime d-ideal in F{Y} with dimension d and F(ug, uy,
, ug) its Chow form. The order of Z is defined to be the order of its Chow form.

The following result shows that we can recover the generic point (&1, ...,&,) of
V from its Chow form.

Theorem 4.13. Let f(u;ugo,--.,uq0) be defined as above and h the order of V.
Then we have

of /=
fpzw Sf, pzl,...,n,
ou
Op

where 83(’;) and Sy are obtained by replacing (uoo, - - -, uao) by (Co, - - -,Ca) in %

uop U’Op
and %, respectively.

Qugg

Proof. Tt follows directly from Lemma [£.10] and Theorem .11} |

Remark 4.14. The o6-resolvent [10] and [32], p.34] is closely related with the differen-
tial Chow form, although they are different. From Lemma [£10] and Theorem .11
we can see that both of them can be used to reduce a d-ideal 7 to a d-hypersurface
which has the same order as Z in a certain sense. But they are quite different.
First, the resolvent depends on a parameter set U of Z. To be more precise, let
Z = Y\ U. Then, the resolvent is essentially constructed in F(U){Z}. Second,
to define the resolvent, we need only one new indeterminate w and add one linear
d-polynomial w —cvy — - - - — ¢pv, to Z, where Z = {vy,...,v,}. Furthermore, ¢; in
the above expression are from F. Therefore, the resolvent will never be the Chow
form. Of course, if 7 is of dimension zero and we take ¢; in w —c1y; — -+ — ¢ yYp as
d-inderterminates, then the resolvent is the Chow form of Z. On the other hand,
the resolvent of Z can be obtained from its Chow form by specializing some w;; to
certain specific values and using techniques in Theorem
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4.3. Differential Chow form is differentially homogenous. Following Kolchin
[23], we introduce the concept of §-homogenous d-polynomials.

Definition 4.15. A é-polynomial p € F{yo,y1,...,Yn} is called é-homogenous
of degree m if for a new J0-F-indeterminate A, we have p(Ayo, Ay1, ..., Ayn) =
A"P(Yos Y1, -+ Yn)-

The differential analog of Euler’s theorem related to homogenous polynomials is
valid.

Theorem 4.16 ([19, p.71]). A §-polynomial f € F{yo,y1,---,Yn} s 6-homogenous
of degree m if and only if

zn:2<k+7”)y(k)3f(yov---7yn){mf, r=0,
j k+r -
j=0 keN r ! 69](' ) 0, r#0.
For the Chow form, we have the following result.

Theorem 4.17. Let F(ug,uy,...,uq) = f(w;upo,...,uqp) be the Chow form of
an irreducible §-variety V' of dimension d and order h. Then

1)
U o (O RECY A oA,
S Stk + e ol = {1y 027

where T s a nonnegatwe integer.
2) F(ug,uy,...,uq) is a 6-homogenous §-polynomial of degree r in each set u;
and F is of total degree (d+ 1)r.

Proof. Let (&1,...,&,) be a generic point of V- and §; = —>7_, u€; (1 = 0,...,d)
defined in (£2). From @3], f(u;ugo,--.,udo) is the characteristic set of the prime
d-ideal L. Since f(u;¢o,C1,-..,Ca) = 0, we have

9 h
B a5+ 0 (&) + 5 (=€) + 5 (- ()€ + -+ s = (o D&M =0 (%)
] g h—1
st 0 A D)+ s (g T =0 (1)
0, 2 2] h\ (h—2
st 0+ 0 LG o -0 T I=0 24
d 0 R (0
Gt 0 w0+ 0 w0+ SZREMEY) =0 ()
In the above equations, % and 3((” (1=0,....,h5= 17 ...,n) are obtained by
substituting ¢; to u;o (¢ =0,1,...,d) in each (L) and o (L), respectively.
Now, let us consider the J-polynomial Z] 0 Zk>0 (k“)ug@) au?’“f*” .

In the case i = 0, first, let (0%) X ur; + (1x) X ul; + -+ + (h*) X u(h) and add
them together for j from 1 to n. We obtain

- af of . .. of of
ZU’TJ +Z U’TJ a 2 ‘+ +Z 57 +<Ta +G +- '+<7(—h) 8C(h) =0

G 7T O¢ b
So the §-pol 1 f TR SOOI
o the é-polynomia Z Urj g + Z ul; 8u - + Z uyl; 8u” + 'Zo Uy 5o
j= o
vanishes at (ugo, - . Udo) (CO, el (d) Thus in the case T = 0, it can be divisible
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n h
by f,ie. > > ((TI;) 68(fk) = rf. By Euler’s theorem, f is an algebraic homogenous
=0 k=0

0-polynomial of degree r in each set of indeterminates w; = (u;, . . ., u;,) and their
derivatives. But in the case 7 # o, since this J-polynomial is of order not greater
than f and cannot be divisible by f, by Lemma .8 it must be identically zero.

Thus, we have proved 1) of the Theorem.
In the case i # 0,

¢ T (l:)u”j 0 F 1) x (l " 1)“3] 4o (h) X (h>uf,’j”)
— C)“oj%g?+ (Ztl)“;j% R (:”)u(a};_—i) 8;55};)
it (- () o s (- (e - () () 0)
(Ot = (T e o () ()
- (i)“oj%+ (i‘:l)u;j Buif“) +..4+<2> (U;; L)aa(fh)
o]

i\ Of . i+ 1 af h\ of (h—1i)
+(Z_>m<—uws,)+( ' >6¢<‘“’( woie) ++ (1) PROLRCIATA

Therefore, >0, (; )ugja ()—i-zj 1 (ltl)uwd <,+1)+ +3 51 (; )ug}; Z)dag,?)-l-

2+1 i _
( )CU d(( ) +( ) éag(“ﬂ) +- ()Ca ac(h) 0.
+1
Thus, the §-polynomial Z] 0 ( )u‘”a g _|_Zj o (zi )u‘fﬂa G 4 +Z] 0 ( )
ug;ﬂ') 83{;) is identically zero, for it Vanlshes at (ugo, - - - ,udo) = (Coy.--,¢q) and

cannot be divisible by f.
From the above, we conclude that

z":z kti) w Of 0, i #0,
i\ i Yoi o (k+z> rf, i =0.
J=V k=2

From Theorem E.T6] and the symmetry property of F(uy,...,uy), the theorem is
obtained. |

Lemma 4.9, Theorem [Tl and Theorem [£.17] together prove the first property
of Theorem

Remark 4.18. Using the terminology from [24], the differential Chow form F'(ug, uy,
, Ug) is (d + 1)-6-homogenous in (ug,uy,...,uq).

Definition 4.19. Let Z be a prime d-ideal in F{Y} of dimension d and F(ug, uy,
, ug) its Chow form. The d-degree of Z is defined to be the -homogenous degree
r of its Chow form in each u; (i =0,...,d).

The following result shows that the d-degree of a §-variety V is an invariant of
V' under invertible linear transformations.

Lemma 4.20. Let A = (a;;) be an n X n invertible matriz with a;; € F and
F(ug,uy,...,ug) be the Chow form of an irreducible d-variety V with dimension d.
Then the Chow form of the image d-variety of V under the linear transformation
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1
0

Y = AX is FA4(vo,...,vq) = F(voB,...,v4B), where B = <: O'A()) and u; and
0

v; are regarded as row vectors.

Proof. Let £ = (&1,...,&,) be a generic point of V. Under the linear transfor-
mation Y = AX, ¢ is mapped to n = (n1,...,m,) with n; = Z?Zl a;;€;. Un-
der this transformation V is mapped to a d-variety V4 whose generic point is

n. Note that F4(vq,...,vq) = fA(vij; V00, + -+ Va0) = (O p—y Vik@kj; V00, - - - » Vdo)
n n n n

and J:A(Uz‘j; = Dt VORTIRs -+ 5 = Doy VarTle) = f (D5 ikags = D Yok -

= 2 k1 Vakk) = S k=1 vikangs — 3250 (= vokak; )55 - -

- Z;L:1(EZ:1 vak ak;)€;) = 0. Since V4 is of the same dimension and order as V
and F4 is irreducible, from the definition of the Chow form, the claim is proved. [

Definition 4.21. Let p be a d-polynomial in F{Y}. Then the smallest number r
such that y5p(y1/yo,- -, Yn/Y0) € F{Y0,Y1,---,Yn} is called the denomination of
p, which is denoted by den(p).

Example 4.22. Inthe case d = n—1and n > 1, if {p(y1, ..., yn)} is a characteristic
set of Z w.r.t. any ranking, then by Example the §-degree of Z cannot exceed
the denomination of p. So the denomination of p gives an upper bound of the
6-degree of Z. But, we do not know whether they are the same.

Example 4.23. In the case n = 1, we have d = 0. If {p(y)} is a characteristic set
of Z w.r.t. any ranking, then the d-degree of Z is exactly equal to the denomination
of p. Now we can give a bound for the J-degree of Z from the original equation of
p without computing its denomination.

For a d-monomial 0(y) = y' (y' )1 (y")2 ... (y®))=, define its weighted degree to
be lg + 201 + - - - + (s + 1)l,, denoted by wdeg(0(y)) =lo + 201 +--- + (s + 1)l5. For
a d-polynomial p € F{y}, we can define its weighted degree to be the maximum
of the weighted degrees of all the J-monomials effectively appearing in p. Clearly,
the denomination of p cannot exceed its weighted degree, and we have examples for
which den(p) < wdeg(p). Let p = 2y’ — yy”. Then, den(p) = 3 and wdeg(p) = 4.
The Chow form of sat(p) is F(u) = wouiuj — uduf — 2uius + 2upuyu}, where
u = (ug, u1). So the d-degree of Z = sat(p) is 3, which is less than wdeg(p).

Now we contrast the above p with a -polynomial ¢ = y'> — yy" that is different
from p by only a single coefficient. Then den(q) = 4 and wdeg(q) = 4. The Chow
form of sat(q) is G(ug) = uouiuf —uduiuy —ufFu? +udu;?, so the 5-degree of sat(q)
is 4, which is equal to the weighted degree of q. Thus, the weighted degree is a
sharp bound.

4.4. Factorization of the differential Chow form. In the algebraic case, the
Chow form can be factored into the product of linear polynomials with the generic
points of the variety as coefficients. In this section, we will show that there is a
differential analog to this result.

Let

d
ﬁ: Uui\{uoo}

and Fo = F(u)( E)%), e ,uég_l)). Consider the Chow form f(u;ugo, 10, - - -, Udo)

as an irreducible algebraic polynomial p(ué’é)) in Fy [ué}é)]. Let g = deg(p, u(()g)) =
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deg(f, u(()]é)). In a suitable algebraic extension field of Fy, p(u(()g)) = 0 has g roots
Y1,---,%g- Thus

g
(4.6) f(u;ugo, ut0; - - -, uao) = A(ug, ug,...,u H Uég) =),

where A(ug,uy,...,uq) is in F{ug,...,uq}. For each 7 such that 1 <7 < g, let
(47) Fr = Folre) = F@) iy, - ufs 77

be an algebraic extension of Fy defined by p(u(()o)) = 0. We will define a derivation

0; on F, so that (F.,d,) becomes a differential field. This can be done in a
very natural way. For e € F(u), define §,e = de = ¢/. Define dlugy = “(()Zo) for
1=0,...,h—1and

5?“00 = V-
Since f, regarded as an algebraic polynomial p in ué}é), is a minimal polynomial

of v-, Sy = (h) does not vanish at u((m) = ~,. Now, we define the derivatives of

8t ugg for i > h by induction. First, since p(vy,) =0, §-(p(v+)) = Sf|u(h,)_’y 0 () +
00 — /T

T|ugi5):% = 0, where T = f' — ég+1). We define 68t 1ugg to be 6,(v,) =

—S% W Supposing the derivatives of 67ugy with order less than j < i have
o0 — /T

been defined, we now deﬁne Siug. Since ) = Spu 0+ Y L T, is linear in uég'm,

we define d2ug to be — Sf W) g i

In this way, (F;,d,) is a differential field which can be considered as a finitely
differential extension field of (F(u),d). Recall that F(q) is a finitely J-extension
field of F contained in £. By the definition of a universal §-extension field, there
exists a d-extension field F* C & of F(u) and a d-isomorphism ¢, over F(u) from

(Fr,d:) to (F*,§). Summing up the above results, we have

Lemma 4.24. (F,,0,) defined above is a finitely differential extension field of
F(Q), which is §-F (Q)-isomorphic to a subfield of &.

Let p be a é-polynomial in F{ug,uy,...,uq} = F{u,ugy}. For convenience,
or, say, replacing Uéo) by v-, we mean substituting u(hﬂ)

by 64, (i > 0) in p. Similarly, by saying p vanishes at “(()}d) = 7,, We mean

by the symbol p o
Upo =7

Pl = 0. It is easy to prove the following lemma.
Ugy =77
Lemma 4.25. Let p be a §-polynomial in F{@,ugy} and f the Chow form for a

prime §-F-ideal T of dimension d. Then p € sat(f) if and only if p vanishes at

h
UE)O) =7r-

When a d-polynomial h € F(a){Y} vanishes at a point n € F7*, it is easy to see
that h vanishes at ¢,(n) € £". For convenience, by saying 7 is in a d-variety V'

over F(u), we mean ¢, (n) € V.

Remark 4.26. In order to make F, a differential field, we need to introduce a
differential operator ¢, which is related to 7,, and there does not exist a single
differential operator to make all (7 = 1,...,g) differential fields. This natural
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phenomenon related with nonlinear differential equations seems not to have been
used before. For instance, let p = y’?> — 4y. Then Z = sat(p) is a prime J-ideal
in Q(t){y} and let F be the differential rational function field of Z. By factoring
p= (¥ —2y¥) (¥ +2\/y), we can define two more differential fields: F; = Q(t)(\/y)
with a differential operator d1y = 2\/y and F» = Q(t)(\/y) with a differential
operator day = —2,/y. Note that F; and > are not compatible, although each of
them is isomorphic to a subfield of £. Finally, both F; and F5 are isomorphic to
F.
With these preparations, we now give the following theorem.

Theorem 4.27. Let F(ug,uy,...,uq) = f(u;ugo,...,ud) be the Chow form of an

irreducible 6-F -variety of dimension d and order h. Then, there exist &x1,...,&m
in o differential extension field (F;,d0.) (t=1,...,9) of (F(u),0) such that
g
(48) F(uo,ul,...,ud) :A(uo,ul,..., H UOO"‘ZUOpng ,
T=1 p=1
where A(ug,uy, ..., uq) is in F{ug,...,uq}, 0 = U?:o u;\ugp and g = deg(f, u(()g)).

Note that equation &) is formal and should be understood in the following precise
meaning: (oo + 31—y op€ry) ™) 2 6" ugp + (S, npér).

Proof. We will follow the notation introduced in the proof of Lemma Since
PR a_, 70 Let &y = Fro/Frolp=1,...,n),

. Note that f;, and &, are in F,. We will prove

-

f is irreducible, we have f;o =

of

where frp = 5. m_
P 00 —

Vr = =6 (uo1ér1 + u02ér2 + -+ + Uonbrn)-
Differentiating the equality f(u;{o,(1,...,Cs) =0 w.r.t. ul" | we have

0p >
af 0 f
—w T (=) =
Ouy o Aul 00
where % are obtained by substituting {; to u,0 (¢ = 0,1,...,d) in W Multi-
Lo
plying uopp to the above equation and for p from 1 to n, adding them together, we

have

n af af
Z ooy h) (h) Z uopp) = Y uop——riy + o5 = 0.
ug,”  Ou =1  Oug, Ougyg

Thus, ¢ = 22:1 UQPW + uooa—(fh) € sat(f). Since ¢ is of order not greater than
Uo Yoo

f, it must be divisible by f. Since ¢ and f have the same degree, there exists an
a € F such that ¢ = af. Setting u( ) = = =, on both sides of ¢ = af, we have
22:1 Uop frp + oo fro = 0. Hence, as an algebraic equation, we have

(4.9) Ugo + ZUQp&-p =0
p=1

under the constraint uéo) = v,. Equivalently, the above equation is valid in (F, d,).

As a consequence, v, = 5h(zp 1 Uop€rp). Substituting them into equation (E.G),
the theorem is proved. O
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Remark 4.28. The factors in equation (@8] are the h-th derivatives of the factors
in the corresponding factorization of the algebraic Chow form [I6] p.37].

For an element 1 = (11,...,7,), denote its truncation up to order k as nl¥l =

(771,---,7]n7---777§k)7 ...,nflk)).

In the proof of Theorem [£27] some equations are valid in the algebraic case only.
To avoid confusion, we introduce the following notation:

“Péo) = Py 1= ugg + Uo1Y1 + -+ + UonYn,
1
(4.10) ‘”P’( )= AP =l ulyyr + uory, + -+ Uy Y + Uonl

am(s k) (s—k
]P() 00 +ZJ . 0()“&)( ),

which are considered to be algebraic polynomials in F (u([)s], .. .,ugf])[Y[s]], and

Ej), yz(]) are treated as algebraic indeterminates. A point 7 = (91,...,7,) is said

to be lying on a}P’gk) if regarded as an algebraic point, ¥l is a zero of a]P’(()k). As a

consequence of (9] in the proof of Theorem 27, we have

Corollary 4.29. (&, ., &, --- ,éih‘l)gﬂ, cee 55’1_1)57”) (r=1,...,9) are com-
mon zeros of “Py =0, *P, =0,..., a}P’éh_l) = 0 where §, is defined in Lemma E24]

Example 4.30. Continue from Example In this example, F'(u) = u3; (ufy)* —

/ / 1 \2,,2 3 _ .2 / /  Ugo
2u1ug uoougo +(tugr) uge + 4uguco, so g = 2. Also, F(u) = ugy (upy — up17,2* +

2v/—1/ugouor ) (upy — ugy Zg‘l) 2v/—1,/ugotor). So we can obtain vy, = ug, Zg‘l) T
2v/—1\/ugougr (7 = 1,2). Following the proof of Theorem[Z27] we obtain that £;; =
—uoo/um, with Upo, Uo1 satisfying the relation 61U00 =71 = Zg? uOl - 2\/ —1, /UooUO1 5

and 521 = —uoo/u01, with Upo, Uo1 satisfying (52’&00 =2 = Yoo U01+2\/ —1,/UO0U01.

Uo1

In other words, &1 and &51 are in F; and Fy, respectively. Thus, F(u) has the fac-

torization F(u) = u?; (uho+&11ufy; +2v/— 1/ uootior ) (uhg+Ea1ufy —2v/—1/ugotior) =

u(2)1(u00 + 511U01)/(U00 + fgl’lLOl)/. Note that both gil (Z = 1,2) satisfy G‘IP)O =
woo + uor&in = 0, but “PY) = upy + uby &1 + uo18i€in # 0.

Lemma 4.31. In equation [@38)), A(ug,uy,...,uq) is free of u(()};) (i=1,...,n).

Proof. Since f is homogenous in the indeterminates wug; and its derivatives up to
the order h, we have

h—1 n

Zu +u00 h)+ZZu0p k)—rf, reN.

oo k=0 p=0

In this equation, let “go) = ~,. We obtain

h—1 n
(h)
ZU'OP fTP+77fT°+ZZUOp (k) =0,
k=0 p=0
where 86-(70,0 means replacing uég) by ~, in W Consequently,
U,
h—1 n
(h) (k) 8f
SO WO YA
k=0 p=0
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Hence,
(4.11)
h—1 n
f(u§U007Uf10a-~-7deO) H (Uoo +Zuop §Tp+z
T=1 k=0 p=0

4607

(k)/af\
p 8u(()];) /fTO)'

We claim that &;, and Zz;é o Ou(()l;) 88(k> / fro are algebraically indepen-

(h)

dent of uy,” (i = 1,...,n). First, since §, is algebraically independent of uéi)(z’ =

1,...,n), and by Theorem [£13]

af | of

&=~/ —m il
"ol ouly

we have

0 af of 90 of af
R R D R D R
afp B Bu((”) 8u§)p) Buéo) 8u[(),i) Buéo) Buép)

(h)
Dy (8S§g> )?

where ad(fh) is obtained by replacing (uqo, - - . , u4go) by (o, - .-, Cq) in

0p

alently,

of
— 5 (h) /) 4 (h)
(©00,---,ud0)=(Co>---,Ca) 8uép) auéo)

:07

( ok or equiv-

8uéﬁl> (au(h)> augé) 3ug:) <3u(h)) 3ug;) € sat(f).

Set u(()}é) = v,; we have

0 0
ou (()}Z (f‘rp) fTO 811,(()’;) (fTO)pr =0

Thus,
0 T 0 T T
(4.12) 5(,5) _ o P(/h{ o) _,
Ouy; Ouy;
Second, set (uoo, - - -, ud0) = (Co, - --,Cq) in the equation
n h—1 n
h af h 8f k 8f
Z“ép) my T (()0) +ZZ " =rf,
p=1 au()p k=0 p=0 Op
We have
h—1 n
(n_Of 2 of
Z Opa(h) (h)+zz Opa(k)
p=1 k=0 p=0
By Theorem 13|
My o ) NN () af of
h h k
ZUOP£P+C +ZZ 8(h)_
p=1 k=0 p=0
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Then,

h—1 n af W
e (zz W/ (h)) — &~ (&) =0
o U

k=0 p=0 p 00
(k) _of af il n (k) af
u _
(h) (Z p=0%0p 5, <k> ou  ul™ <h> Z p=0%0p Z, <
[ 2 '
af
3uég)
k) of of 5] n (k)
Thus, we have ngl —
<h) Z p=0%0p 3, (k) ou " 9uT \ Bu <h) Z p=0 Yop

rig’“) € sat(f). From Lemma [L25] by setting u(()g) = v, in the above relation, we
P

obtain
(Z pO Opa(k)/f‘l'o
(4.13)
8uoZ

From ([12) and @13), &-, and Zz;é Z 0 uop o (k) /fro are algebraically inde-
pendent of u(()h) (i=1,...,n). Then the symmetric functlons (o) f ST S
ZZ 0 ué];) 88(k> /f‘rO are rational functions in the set of indeterminates {u;p, . . . 7uEZ),
UQk - - u(()},: 1) ci=1,...,d; k=0,...,n} only. Therefore, [T7_ 1(u(()g) Vo) = 9
where 1) is free of U(()i) (z =1,...,n) and ged(¢, 1) = 1. Thus A¢p = f1). Since f is
irreducible, we conclude that A = is free of u(()};) (i=1,...,n). O

Note that the factorization (8] is formal in the sense that different factors are
from different differential fields F,.. The following result shows how to obtain a
factorization in the same extension field.

Theorem 4.32. The quantities &1, ..., in [E8) are unique and (@II) is a
(h) (h)

factorization of F' as an algebraic polynomial in uyy , ..., uy, in an extension field
of}"(uik,...,ugz),uOk,...,u(()},i D i=1,. d;k;:O,..., n).

Proof. From Lemmam equations (#12) and [@I3), we can see that A(ug, ..., uq),
&5, and 0, e Oqu ™ (k)/fTO are free of u(()z)(z =1,...,n). Then, (@II) is a
factorization of the Chow form F'(uy, ..., u,) in the polynomial ring F (u, . . ., uz(.Z),
UQk, - - u(()z D= 1,...,d; k=0,. )[ué}é), .. uéz)] Thus, the factorization
@1 must be unique, and hence fﬂ. O

4.5. Leading differential degree of an irreducible differential variety. In
this subsection, we will define the leading differential degree for a prime §-ideal and
give its geometric meaning.

Definition 4.33. Let F(ug,uy,...,uq) = f(u;ug,- .., uqd) be the Chow form of
a prime J- f—ideal T of dimension d and order h. By Lemma 20 the number
g = deg(f, “00 ) is an invariant of Z under invertible linear transformations, which
is called the leading differential degree of T.
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From (4.8]), there exist g points (§;1,...,&q) (T = 1,...,¢), which have inter-
esting properties.

Theorem 4.34. The points (§:1,...,&m) (T =1,...,9) in (EI) are generic points
of the §-F-variety V. If d > 0, they also satisfy the equations

n
ugo—l—ZuUpyp:O(o: 1,...,d).
p=1

Proof. Suppose ¢(y1,.-.,yn) € F{Y} is any d-polynomial vanishing on V. Then
o1, .., &) =0. From Theorem T3] &, = %/%, we have
Uop Upo

(6f af of 8f):0’

o ol i i
where % are obtained by substituting {; to u, (i =0,1,...,d) in aa(fh)
0p
) ) ) .
Hence, qﬁ(a m /8 -(fh) yenn (f, ﬁ) ) vanishes for (ugg, - - ., ug0) = (Lo, - - -, Ca)-
Ug ’ du ou,
of of of of
Then there exists an m € N such that (augg))m¢(a [ 5 5l Bué’g)) €

sat(f) in F{Q,ugo}. By Lemma H25] we have (fTo) d(&r1y -1 &) = 0. Thus
d(&r1y ...y &rn) = 0, which means that ({:1,...,&§m) € V.

Conversely, for any p € F{Y} such that p(&1,...,&n) = 0, there exists an
I € N such that p = (835}3) )lp(ajg;i) afgf’y - afé? afgg)) is in F{u,ugo}, which
vanishes at u(()g) = 7,. By Lemma 28 p € sat(f). Now treating p as a 0-
polynomial in F(u){ugo,--.,uqp}, we have p(&1,..., &) = 0, and hence p(&y, ...,
&) =0. So (571, .-, &) is a generic point of V.

Since - (h) + 50 (h)( &) = 0, we have Zp 1u"pa (h) + ([,8 = = 0. Thus,

ZZ,O Uop o thy (fh) Vanlshes at (oo, - -, udo) = (Coy -+ -5 Cd)- In the case o;«éO, szo Uop

of

o (,L =0. Consequently, Uy + Z L Uopbrp =0(0=1,...,d). a

Example 4.35. Continue from Example 1300 We have {11 = —ugo/up1 under the
condition upy = y1 = 20uf; — 2¢/—1,/ugouer. Then &i; = 2, /—%0’% and &7 is a

Uo1

zero of the original d-ideal sat(y}?> — 4y).

Now, we will prove a result which gives the geometrical meaning of the leading
d-degree.

Suppose F'(ug,...,uq) is the Chow form of V' which is of dimension d, order h,
and leading differential degree g. Recall that by saying a point n = (11,...,7,)

lying on aIP’(()k) we mean that nl*l = (ny,..., 7, ... ,77§k), e n,(Lk)) is an algebraic zero

of a]P’ék). Theorem [.34] and Corollary show that (&r1,...,&n) (T =1,...,9)
are intersection points of V and P; = 0(: = 1,...,d) as well as “]P’(()k) =0(k =
0,...,h—1). In the next theorem, we will prove the converse of this result, that is,

1y &m) (T=1,...,g) are the only elements in V which are alsoon P; = 0 (i =

(
1,...,d) as well as on a}P’gk) =0(k=0,...,h—1). Intuitively, we use P; = 0(i =
1,...,d) to decrease the dimension of V' to zero and use “]P’((Jk) =0(k=0,...,h—1)
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to determine the h arbitrary constants in the solutions of the zero-dimensional
d-variety.

Theorem 4.36. (&;1,...,&m) (T =1,...,9) defined in [LR) are the only elements
of V which also lie on P;(i =1,...,dW as well as on “P(()j)(j =0,...,h—1).

Proof. First, by Theorem [£34] and Corollary 29] (&1, ...,&m) (T =1,...,9) are
solutions of I(V) and Py, ..., P4, which also lie on “Py,* P, ... ,° P(()hfl). It suffices
to show that the number of solutions of I(V) and Py,..., Py, which also lie on
Py, PG, ..., * ]P’éh_l), does not exceed g.

Let J = [I(V),Py,...,P4] C F*{Y}, where F* = F(J’, u;). By Theorem
BI4] J is a prime d-ideal of dimension zero and order h. Let J{ = 7N F* [Y[h]].
Since J is of dimension zero and order h, its d-dimension polynomial is of the form
w(t) = h, for t > h. So J™ is an algebraic prime ideal of dimension h.

Let Jo = (J™ 2Py, “I%, .. aIP’(hfl ) be an algebraic ideal in the polynomial
ring Fo[Y", Uoo, cee (()h_ ], where Fy = }'*(Uj 1 ug; 1]) and u[h_l] denote the set

{uoj, ugj, - - “0; } Similar to the proof of Lemma[3.5] we can show that [Jj is an

algebraic prime ideal of dimension h. If we can prove that U([)o = {woo, - - -, Ugo 1)}

is a parametric set of Jp, then it is clear that J; = (Jy) is an algebraic prime ideal
of dimension zero in }'O(ugé 1})[Y[h]] = .F*(ugh_l])[Y[h]}. So we need to prove that

ugéfl] is a parametric set of Jy. Suppose the contrary. Then there exists a nonzero

d-polynomial involving only {uqo, ..., u(()g_l)} as well as the other u, which belongs

to Jo. Such a J-polynomial also belongs to [J,Po] € F*(uo1, .-, Uon){Y1s- - Yn,

ugo}- From the proof of Theorem LTIl {F,Sry; — %, coey SEYn — 86(s>} is a
Uo1

Upn,
characteristic set of [7,Pp] w.r.t. the elimination ranking ugg < y1 <+ < ypn. So

this J-polynomial can be reduced to zero by F(uy,...,uy). But ord(F, uoo) =h,a
contradiction. So we have proved that J; is an algebraic prime ideal of dimension
Zero.

Clearly, J> = (J1," P(h ) € Fo (uga Y U;-Lzlu&-])[Y[h], ugé)] is an algebraic prime
ideal of dimension zero. Then, there exists an irreducible polynomial involving
only ugf) and u(()g). Similar to above, it also belongs to [J,P¢], thus it can be
divisible by F. Since F is irreducible, it differs from F' only by a factor in F. Thus,
F = f(u; oo, W10y - - - 7'de0) € Js.

Let (&1, -, &) be a generic point of V and §; = — 377, w6 (1 = 0,...,d). By
Lemma [L3] the d-ideal [I(V),Py,...,Pg,Po] in F(u){y1,- .-, Yn,Uo0,---,Udo} has a
generic point (&1,...,&n,Co,---,Cq). Since f(u; o, ..., qs) = 0, differentiating both

sides of this identity w.r.t. uOI;), we have the following identities:
h

af af ( (z)
R _|_ R —
duy ; duly k

af) are obtained by substituting ¢; to u;g in === a . Let gz = (h) aa(fh> yj(k) +

8(]

S (0o 5)8 ?hf Yy - oy (5= 1,...,n,k_o,...,h). Then gj1, € [I(V),Py,
0j

gj(l‘k))_o, (G=1,...,mk=0,...,h),

where

31fd=0,P;(i =1,...,d) is empty.
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L Pg,Po] C [T, Py], for g;i vanishes at (&1,.. ,fn, Coy---5Ca)- Denote the alge-
bralc ideal [7, IP’Q] ﬁf*(U 1 ug;])[Y[ I ugo, .. Uoo ] by [, Po]{". Tt is clear that
gjr € [T, Po]M. We will show that [7,Pe]" = (7" 2Py, ... 2 P{"), which im-
plies that g € ._72. Let n = (m1,...,n,) be a generic point of J. Then (n1,..., 7,
—>_i_1 uojn;) is a generic point of [7, Po]. Thus,

n

h)
(nlv'-'anna"w?/ﬁ PRI '777'Slh)7 ZUOJ%’nw—Z(UOﬁ?j)(h))

j=1
is a generic point of [7,P]™. Of course, it is also a generic point of (7" ,% Py,
¢ IP’(()h)). So the two ideals are identical. Thus, g;; belongs to J». Note that
the coefficient of yj(.k) in g1, is (})Sy = (Z)ai—g,o) So V(J2) C V(f([Uo,uOO)) Gik °
j=1,....,n;k = 0,...,h), and the latter algebraic variety consists of exactly ¢
elements. Thus, |V(71)| = [V(J2)| < g. Since every solution of J which also lies

on Py, Pp,...," ]Poh_l , when truncated up to order h, becomes a solution of Ji,
it follows that the number of solutions of I(V) and Py,...,[Py which also lie on
Py, P, ..., IP’(()h_l) does not exceed g. O

With Theorems [£.27 [4.32] [£.34], and [4.30, we proved the second and third state-
ments of Theorem

From the proof, we can see that a zero-dimensional algebraic ideal is obtained
as shown by the following corollary.

Corollary 4.37. Let T be a prime §-ideal in F{Y} of dimension d, order h, and
leading §-degree g. Use the same notation as Theorem E36l. Then

T=(ZL,Py,...,P 0 F YRy, .. 2 PLY) ¢ Pty

is an algebraic prime ideal of dimension zero whose solutions are exactly (&1, . .
G (1=1,...,9), where F* = f(Ule u;).

Example 4.38. Continue from Example Note that d = 0, h = 1, and
g = 2. Let V be the general component of p = y> — 4y; = 0. As in Theorem
[£36] we introduce the equation *Py = wugy + upiyr which intersects V at two
pOthSZ §11 = —Uoo/U()l, With (51&11 = 2\/—’LL00/UO17 and 521 = —uoo/u01, With
52621 = —2\/ —uoo/u01. AS indicated by Corgllarym, (511, 61511) and (521, (52521)
are the only solutions of the algebraic ideal Z = (p,* Py) C Q(uoo, wo1)[y1,¥1]-

*

Due to Corollary £37] we can give a differential analog to Stickelberger’s Theo-
rem in algebraic geometry.

Theorem 4.39 (Stickelberger’s Theorem [9l p.54], [33]). Let P C F[Y] be a zero-
dimensional ideal. Denote A = F[Y]|/P. Then A is a finite-dimensional vector
space over F. For any polynomial f € F[Y], let Ly be the F-linear map:

Lf A — A

g fg

where § denotes the residue class of g € F[Y] in A = F[Y]/P. Then the eigenvalues
of Ly are f(«), with multiplicity mq, where a € V(P) and mq, is the multiplicity
of a € V(P). Thus, the determinant of Ly is [[,cyp) f(a)™=
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Theorem 4.40 (Differential Stickelberger’s Theorem). Let Z be a prime d-ideal in
F{Y} of dimension zero, order h, and leading §-degree g. Let Py = ugg + uo1y1 +
<o+ UpnYn = 0 be a generic §-hyperplane and “Pgy,...,* P((thl) be defined as in
(@I0). For any d-polynomial p € F{Y}, let s = max{h,ord(p)} and L, be the
}'(u([)h_l])—linear map:

Ly: Feay HYW/I — Fag™¥H)/Z
) gp
where I = (ZNF[Y)],2 Py, ... ]P’éh_l)) C }'(ugh_l])[Y[S]] and g denotes the residue
class of g € ]—'(ugkl])[Y[s]] in f(u([)hfl])[Y[s]]/f Then the eigenvalues of L, are
p(&;) and the determinant of L, is [17_, p(&).

Proof. By Theorem[39, it suffices to show that Z is a prime d-ideal in ]-"(u([)hfl] )[YE]]
of dimension zero, and V(f) = {f[TS] = (&1, 5 &rny ey 05801, ., 058) T =
1,...,g9}. If s = h, then this is a direct consequence of Corollary L37 If s > h,
§LS] clearly vanishes “Péi) (¢=0,...,h—1). By Theorem [4.30] §LS] are also zeros of
Z N F[Y)] and are the only zeros of Z. O

4.6. Relations between the differential Chow form and the variety. In the
algebraic case, we can obtain the defining equations of a variety from its Chow
form. But in the differential case, this is not valid. Now we proceed as follows to
obtain a weaker result. Recall that a §-variety is unmixed if all of its components
have the same dimension.

Lemma 4.41. Let V be an irreducible §-F -variety of dimension d > 0 and (0,...,0)
¢ V. Then, the intersection of V with a generic §-hyperplane passing through
(0,...,0) is either empty or unmized of dimension d — 1. Moreover, in the case
d > 1, it is exactly unmized of dimension d — 1.

Proof. Let T = I(V) be the prime §-F-ideal corresponding to V. A generic 6-
hyperplane passing through (0,...,0) is u1y1 +uays + - - - + UpYn, where the u; € £
are §-F-indeterminates. Since (0,0,...,0) ¢ V, we have
VA V(uryr +ugys + -+ + upyn)
= V(Z,wiyr +uzys + -+ + unyn)

= U V([Z, uryr + w2y + - + unynl /vi)
i=1

= YUV(IZ, wiyn + uago + - + wnyn] : 45°).
i=1
Suppose a generic point of V' is (&1,...,&,). Since (0,0,...,0) ¢ V, there exists
at least one 7 € {1,...,n} such that & # 0. Of course, §; = 0 means V([Z,u1y; +
UgYa + -+ + UnYn] + Y$°) = 0. So we need only consider the case when & # 0.
Without loss of generality, we suppose &1 # 0.
Let

Q= [T,u1y1 + usyz + - + Up¥n] 1 Y° C Flut, .., un){¥1,-- -, Yn}

and

QO = [I7u1y1 +U2y2 + - +Unyn] il/(fo g ]:<’LL2,. "7un>{y17" ->yn7U1}-
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It is easy to verify that (&, ... is a generic point of Qy and

dim(Qp) = d by following the proof of Lemma Now we discuss it in three
cases.

, gn’ _ U2§2+"'1+un£n )

Case 1. TN F{y1} # {0}, that is, & 1is d-algebraic over F. We have
dimV = d = d.tr.deg F(&1, ..., &) /F = d.tr.deg F(&1)(&o, - .., &) [ F (&)

Suppose &, ..., Eq11 are 6-independent over F{(&7).

First, QoNF(ua,...,us){u1} = {0}. For if not, we have a nonzero é-polynomial
h(ug, ..., up,u1) € F{ua,...,up,us} such that h(us,...,un, —""’E'ZJFE%”E“) = 0.
For a fixed i between 2 and n, if we specialize u; to —1 and u; (j # ) to 0, then by
Theorem 216 &;/& is d-algebraic over F. So each &; (i = 1,...,n) is §-algebraic
over F, which contradicts the fact that d > 0. It follows that Q is not the unit
ideal and dim(Q) > 0.

Second, since yo, ..., Yyq+1 is a parametric set of Z, it is also a parametric set for
Qo. Soya, ..., Yit1,u are 6-dependent modulo Qp. Since QoNF (ug, ..., uy){ur} =
{0}, we know that ys, ..., y4+1 are 5-dependent modulo Q. Using the fact that each
remaining y; and ys, . . ., Y441 are 6-dependent modulo @, we obtain dim(Q) < d—1.
If d = 1, then dim(Q) = 0 = d — 1 follows. Now for d > 1, we claim that
dim(Q) = d —1 by proving that ys,. .., ys are é-independent modulo Q. For if not,
there exists 0 # h(ya,...,Y4,u1) € Qo such that h(&s,..., &, —uzgﬁg%"f") =0.
By Theorem 2T6l we can specialize ugy1 to —1, the other u; to zero, and conclude

that &,..., &g, 5‘g1 are d-dependent over F. Since &o,...,&y are d-independent

over F, £441 is d-algebraic over F(&1,...,&;), which is a contradiction. Thus
dimQ =d — 1.

Case 2. d > 1 and & is d-transcendental over F. In this case, we suppose a
d-transcendence basis is &1, ..., &qy.

First, Qg N F(ua,...,u,){ur} = {0}. For if not, as in the preceding case, we
conclude that &;/&; is d-algebraic over F, that is, &;, &, are d-algebraic over F, which
contradicts the fact that d > 1. So Q is a nontrivial prime J-ideal.

Second, dim(Q) = d — 1, for on the one hand from the fact that yi,ys, ..., yd, u1
are 6-dependent modulo Qg, we have dim(Q) < d — 1, and on the other hand, from
the fact that ya,...,yq,u; are d-independent modulo Qp, there comes dim(Q) >
d—1.

Case 3. d =1 and & is d-transcendental over F. If QoNF (ug, ..., un) {u1} # {0},
the intersection is empty. If Q # [1], similar to Case 2, we can easily prove that
the intersection is of dimension zero.

So for each i € {1,...,n} such that & # 0, we can show that V([Z,u1y1 + u2y2 +
cood upYn] - ySe) is either empty or of dimension d — 1, similar to the above steps
for the case i = 1. If d > 1, it is exactly of dimension d — 1. Thus the theorem is
proved. O

By saying independent generic d-hyperplanes, we mean that the coefficients of
these d-hyperplanes are d-indedeterminates in £. The following result gives an
equivalent condition for a point to be in a J-variety.

Theorem 4.42. Let V be a -F-variety of dimension d. Then T € V if and only
if d+ 1 independent generic §-hyperplanes Py, Py, ..., Py passing through T meet V.
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Proof. The necessity of the condition is obviously true. We now consider the suf-
ficiency. We adjoin the coordinates of Z to F, and denote F to be the d-field
thus obtained. Regarded as a d-variety over F, V is the sum of a finite number
of irreducible §-varieties V;, which are of dimension d [32, p.51]. Suppose Z ¢ V,
and therefore does not lie in any component of V. We now prove that any d + 1
independent generic §-hyperplanes passing through Z do not meet V;. Without
loss of generality, suppose T = (0,0,...,0). Then a generic §-hyperplane passing
through T is s1y1 + -+ - + Sn¥n, Where s; € £ are 0-F-indeterminates. We proceed
by induction on d.

If d = 0, then for (ay,...,a,) € V, each q; is d-algebraic over F. If VNV (s1y; +

-+ 8pYn) # 0, then there exists some (ai,...,a,) € V such that sja; +--- +
Snayn = 0, since the s; are d-independent over F. Thus (ay,...,a,) = (0,...,0), a
contradiction to the fact that Z ¢ V. Thus the theorem is proved when d = 0.

We therefore assume the truth of the theorem for §-varieties of dimension less
than d, and consider a d-variety V of dimension d. Let Py, ...,P; be d+ 1 indepen-
dent generic d-hyperplanes passing through Z. The equation Py can be written as
$1Y1 + -+ + Spyn = 0 with s; 6-F-indeterminates. From Lemma [£.47] P; = 0 meets
V in a §-variety W of dimension less than d. By the hypothesis of the induction,
Py, ...,Py_1 do not meet W; it follows that V' does not meet Py, ...,Py. Therefore
the theorem is proved. O

The following result proves the fourth statement of Theorem

Theorem 4.43. Let F(ug,uy,...,uy) be the Chow form of V and Sp =

Suppose that u; (i = 0,...,d) are §-specialized over F to sets v; of specific elements
in& and P; (i =0,...,d) are obtained by substituting u; by v; in P;. If P; = 0(i =
0,...,d) meet V, then F(vq,...,vq) = 0. Furthermore, if F(vg,...,vq) =0 and
Sr(vo,...,vq) #0, then the d+ 1 §-hyperplanes P; =0 (i = 0,...,d) meet V.

Ou (h)

Proof. Let Z =1(V) C F{Y}, Ic ¢ = [Z,Po,...,Pg] CF(u >{y1,...,yn,u00,.. L Udo }s

and Z; = [I¢ ] CF(ug,...,uz){y1,-..,Yn}. By LemmalLI0] {F (h) Y1 — aﬂ),...,

8‘9{;) Yn — %} is a characteristic set of I+ ¢ w.r.t. the ehmmatlon rankmg ugo <
on

< Ugp <Yp < - = yn Since F is irreducible, I ¢ = [F, Spy1— » (h) ey SEYn—
» (,L] S with Sp = o 5,0 .

When u; are d-specialized to v;, Z; becomes a d-ideal in F(vy,...,vg){Y}. If
Py, ...,Pq meet V| then Z; = [Z,Po,...,P4] # [1], which implies F(vg,...,vq) =0
since I’ € ¢ ¢.

If Sp(vo,...,vq) # 0 and F(vo,...,vq) = 0, then let 7, = (aa(h) (Vo, -+,
va))/(Sr(vo, ...,va))(i = 1,...,n). We claim that (7,...,7,) lies in V and
the d + 1 6-hyperplanes Py, ..., P4, which implies that Py, ..., P; meet V.

First, let p be any d-polynomial in Z. Then p € 1[575, so there exists an integer
m such that SPp € [F,Spy; — %,...,Spyn — %]. If we specialize u;; —
Vij, Uio — Ui and let y; = 7, ther(ilwe have S},ﬂ”(vo,.o?. ,va)p(q,---,7,) = 0, so
P(H1,---,Y,) =0. That is, (,...,7,) € V. Second, since P; € I ¢, similar to the
above, it follows that (g, ...,7,,) lies in P;. So Py, ...,P; meet V. |
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Remark 4.44. Let X be the set of all (n — d — 1)-dimensional linear spaces in
F™ that meet an irreducible é-F-variety V of dimension d. From Theorem 43|
X CV(F) and X \V(SF) =V(F)\V(SF). That is, a “major” part of X is known
to be V(F)\ V(SF). An interesting problem is to see whether X is a d-variety for
a projective d-variety V. In [24], Kolchin showed that this problem has a positive
answer in a special case; that is, V' is a projective algebraic variety which is treated
as a zero-dimensional differential projective variety in a certain way.

Similar to the algebraic case [16], p.22], we can show that a generic §-hyperplane
passing through a given point « = (z1,22,...,2,) is of the form ag + a1y; + -+ - +
anyn = 0 with a; = Z?:()sijxj(i = 0,1,...,n), where g = 1 and S = (s;5)
isan (n +1) x (n + 1) skew-symmetric matrix with s;;(¢ < j) independent §-F-
indeterminates in £. That is,

ap 1
ay Z1
=S
Qnp T

For convenience, we denote such a §-hyperplane by Sz and say a generic d-hyper-
plane passing through a point x is of the form Sx.

Now we write w; = (U0, i1, - - -, Uin)? = SY, where Y = (1,y1,...,9,)T and
the S* are skew-symmetric matrices with s}, (j < k) independent §-F-indetermi-
nates in £. Substituting the u; in F'(ug,uy,...,uy) by these equations, we obtain a

d-polynomial involving sé- x(J < k) and the y;. Regarding this J-polynomial as a 6-
polynomial in %, (j < k), then we have F(ug,u,...,uq) = F(S°Y,S'Y;.. ., Sy
= > 96(Y1s - Yn)B(s%;), where ¢(s%;) are different d-monomials. TIn this way,

we get a finite number of d-polynomials g¢(y1,...,yn) over F, which is denoted
by P. Similarly, in this way, we will get another set D of d-polynomials from
SF(uo, ey lld).

Theorem 4.45. Let V be an irreducible 0-F -variety with dimension d and F(ug, uy,
...,ugq) its Chow form. Then V\ V(D) =V(P)\ V(D) # 0, where P,D are the §-
polynomial sets obtained from F(ug,uy,...,uq) and Sp(ug,uy, ..., ug) respectively
as above.

Proof. On the one hand, for any T € V, from Theorem [£42] any d + 1 generic 6-
hyperplanes passing through Z meet V. So S°Z, S'Z, ..., SC meet V. By the proof
of Theorem 43, F(S°z, S'z, ..., S%Z) = 0. Since s%,(j < k) are d-ndeterminates,
T € V(P). So V\V(D) CV(P)\ V(D).

On the other hand, for any 7 € V(P) \ V(D), since any d + 1 generic 0-
hyperplanes passing through Z are of the form S°Z, S'Z, ..., S9F with the S o-
indeterminate skew-symmetric matrices, we have F(S°Z,S1%,...,9%%) = 0 and
Sp(S°z, S'z,...,5%) # 0. From Theorem E43] S°z, S'7,. .., 8% meet V. Thus
from Theorem B42] T € V. Thus V '\ V(D) = V(P) \ V(D).

Now, we show that V' \ V(D) # (. Suppose the contrary, i.e. V C V(D), in
particular, its generic point (&1, ...,&,) € V(D). Thus, Sp(S%, S, ..., 8%) =0,
where £ = (1,&1,...,&,). Recall that Sé-k(j < k;yi = 0,1,...,d) are indepen-
dent §-indeterminates over F(&q,...,&,). Now we consider a d-endomorphism ¢
of F(&r, ..., &n){shy, (J <k;i=0,1,...,d)} over F(&1,...,&n) satisfying ¢(sfy,) =
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—sb,. and ng(s;.k) =0(j <k;j=1,...,n). It is clear that ¢(Sr(S%,...,5%)) =

SE(shii— > m 1 S0xhs s — > op_y 83.&) = 0. Denoting si, by u;x, we have Sg(u;
Cos---5Ca) = 0, thus S € sat(F), which is a contradiction. So V' \ V(D) # 0. O

Since V is an irreducible §-variety, VNV(D) is a subset of V with lower dimension
than that of V or with the same dimension but of lower order. Thus, V' \ V(D) is
an open set of V' in the Kolchin topology.

Example 4.46. Continue from Example In this example, F(ug) = u?(u})? —
2uyufugufy + (u))?ud +4uiug and Sp(ug) = 2uiuf —2uiujug. Following the steps as
above, we obtain P = {(y})? — 4y, } and D = {y;}. That is, we obtain the defining
equation (y})? — 4y, = 0 for the d-variety under the condition g} # 0.

5. DIFFERENTIAL CHOW VARIETY

In Theorem [[L2] we have listed four properties for the differential Chow form.
In this section, we are going to prove that these properties are also the sufficient
conditions for a d-polynomial F(uy,...,us) to be the Chow form for a d-variety.
Based on these sufficient conditions, we can define the J-Chow quasi-variety for
certain classes of -varieties in the sense that a point in the J-Chow quasi-variety
represents a d-variety in the class. In other words, we give a parametrization of
all d-varieties in the class. Obviously, this is an extension of the concept of Chow
variety in the algebraic case [13] [16].

5.1. Sufficient conditions for a polynomial to be a differential Chow form.
The following result gives sufficient conditions for a d-polynomial to be the Chow
form of an irreducible é-variety. From Theorem [[.2] they are also necessary condi-
tions.

Theorem 5.1. Let F(ug,uy,...,uq) be an irreducible §-polynomial in F{ug,uy,
.,ug}, where w; = (Wi, Wity .- i) (1 = 0,...,d). If F satisfies the following
conditions, then it is the Chow form for an irreducible d-variety of dimension d and

order h.
1. F(ug,uy,...,uy) is 6-homogenous of the same degree in each set of d-variables
u; and ord(F,u;;) = h for all u;; occurring in F.
2. F(ug,uy,...,uy) can be factored uniquely into the following form:
g
Pl w) = A [0+ 3 e )

Q

= A(ug,uy,...,u )H u00+zu0p§rp )
p=1

T=1

where g = deg(F, ué’é)) and &;, are in a differential extension field Fr of F. The
first € =7 is obtained by factoring F(ug,uy,...,uq) as an algebraic polynomial in
the variables ugo), u((ﬁ), . u(()z), while the second one is a differential expression by
defining the derivatives of &rp to be

g%t) = (65&;_1)”%’6):*227 e (m>1)

g, -

recursively.
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3 Z; = (&1, &) (T = 1,...,9) are on the §-hyperplanes P, = 0(c =
1,...,d) as well as on the algebraic hyperplanes “P(()k) =0(k=0,...,h—1).

4. Foreacht, if vio+vinérm+- 40in&mn =0 (i =0,...,d), then F(vq,...,vq) =
0, where v; = (Vio, Vi1, - - - , Vin) and vi; € E. Equivalently, if S°,...,S% are (n+1) x
(n+ 1) skew-symmetric matrices, each having independent §-indeterminates above
its principle diagonal, then F(S°¢,, ..., S%,) =0, where & = (1,601, ..., &m).

Before proving the theorem, we need several lemmas.

Lemma 5.2 ([I5, p.11, Theorem 1]). Let R and 8* be two rings and R isomorphic
to a subring S of 8*. Then there exists an extension ring R* of R such that this
isomorphism can be extended to an isomorphism between R* and S*.

Lemma 5.3. Let V' be an irreducible §-F-variety of dimension d > 0 and P =
ug + ury1 + - - - + Unyn be a generic §-hyperplane where u; € £. Then every generic
point ofV(]I(V), ]P) over F1 = Flug,...,uy) is a generic point of V over F.

Proof. By Theorem B [I(V'),P] is a prime d-ideal of dimension d — 1 in F7{Y}.
Let 1) be a generic point of V(I(V),P). Then for any §-polynomial p in I(V), we
have p(n) = 0. On the other hand, for any d-polynomial p € F{yi,...,yn} such
that p(n) = 0, we have p € [[(V),P]. Then p = 3, h;P®) mod (V). Substituting
ug by —u1y1 — - -+ — unyn in the above equality, we have p = 0mod I(V'). Hence 7
is a generic point of V. (]

In the next result, we will show that if condition 4 from Theorem [5.1] holds, then
the following stronger version is also valid.

Lemma 5.4. Let F satisfy condition 4 of Theorem 51l Consider F' as an algebraic

l h k h
polynomial f( U] , (()]), U(()o)v cey ugn)) in ugj), and (&1, -y &,y - - 571 e 5,2)
1s regarded as an algebraic point. If w;og —l—Z] 1 E ( )wwm(g(k m) € =0(i=
0,...,d;k =0,...,h), then f(wsjk,Woji, Woon, - - w0nh) = 0, where the wqy are

considered as elements in the underlying ordinary ﬁeld of €.

Proof. Regard Q, = [v;jp + E?:1 v;j€rj 1 = 0,...,d] as a d-ideal in F(&; :

j=1...,n){vio,..., v : 2 = 0,...,d}, where v;; are §-F({;;)-indeterminates.
From condition 4 of Theorem B1l F(vo,...,Vq)|lvo,) = 0. It is clear that Q.
is a prime J-ideal and {v;p + Z;L=1 vij&r; + t = 0,...,d} is its characteristic

set with v;p as leaders. By the differential Nullstellensatz, F(vo,...,vq) € Q..
From condition 1 of Theorem Bl ord(F, v;p) = h. Then F(vo, .. vd) (vio +

n h n h n h— (h—m
Zj:l Uijﬁrjv---vvi(o) +Zj:1 Ui(j)ij +Zj:1 Zm:lo ( ) 5 ) =0,...,d).

Regarding the above relation as a pure algebraic relatlon7 we can substitute Ug-c)

by algebraic indeterminates w;;, and regard F' as an algebraic polynomial. Then

f(wagkra wOjl> Woohy - - wOnh) € (w’LOO + Z =1 wzgofm -5 Wion + Z =1 wl]hg‘l’j

Z; 1 Z ( Jw ”mg (h=m) . § = 0,. .,d), which shows that the lemma is valid.
(]

Proof of Theorem Bl Let V. (r = 1,...,g) be the irreducible §-F-variety with
(&ryy- - -5 &rn) as its generic point over F. We will later show that all the d-varieties
V. are the same.

First, we claim that the generic points of V; which lie on Pq,...,P; as well as

on “Py,* Py, ..., “Péhil) are included in {({71,...,&m) : 7 =1,...,9}. Without
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loss of generality, we consider V. To prove that the claim holds for V7, we need to
use the following assertion:
(%) I (M0y-«-3Mm0y--+5 Mhs---,Mnp) 18 a generic point of the algebraic ideal
(V)™ = T1(VA) O Flyts ey Yns-- - ygh), cey y,(Lh)] which lies on aIP’((Tk),a [P’él) (o
dik =0,...,h;l = 0,...,h — 1), then there must exist some 7 such that
1’}]‘0:67—3‘ fOI‘j: 1,...,71.
Assume that (x) is valid. Suppose n = (11,...,m,) € E™ is a generic point of V;

which lie on Py, ..., P4 as well as on “Py,* Py, . .. ,“IP’Ohfl). Then the algebraic point

(M ey My - - ,ngh), ey n(h)) is a generic point of the algebraic ideal I(V;){" =

IVI)NFlyr, - s Yny--- ,yyl), cee y,(lh)] which lies on “P((,k),“IP’(()l) (c=1,...,d;k =
. h;l=0,...,h —1). By (%), there must exist some 7 such that n; = &; for
j=1,...,n. Since 7 is a differential point of V7, thus n = &, for some 7.

Now we are going to prove (). Similar to the proof of Lemma [54] rewrite F' as
(k) @  (h) (h)

an algebraic polynomial f(u,;,ugi, Upg s« Ug, ) and consider condition 2 as a
pure algebraic factorization. Let (110,...,Mn0,- -+, Mhs---,Mnn) be such a generic
point of I(V})" other than (£14,...,&0n, . .. ,ﬂ’f), e ,ﬂ?). Then we have the F-
. . ~ h h

ISOHlOI'phISIIl F(T]107 ooy MOy oo sMhy -+ nnh) = ]:(511, . 7£1n; ey El)’ ceey En)),

which maps 7;; to 5%? for j =1,...,nand k = 0,...,h. By Lemma 5.2 there
exist wqjk, woji € € such that the above algebraic isomorphism can be extended to
the isomorphism

]‘—(7]107 coesTn0y -« s Mhy oo« Tk, U Erlz)vu(()?) e f(é'll? .. 751%7 RN Y;): ) 75%2)7w5jk7w0jl)
where ¢ = 1,...,d;5 = 0,...,n;k = 0,...,h;l = 0,...,h — 1, and ug;) and
ué) map to wejr and woji, respectively Since (710, -« M0y« - s Nlhy - - 5 nh) lies

on 9P a IP’(l) the relation u + > Zm 0( ) ) Njk—m = 0 implies that
Weok + Z;l 1Em 0( )w(,]mflj m 0(c = 1,...,d) and the relation uglo) +

. . n l —

St Yoo (n)ut;” Mig—m = 0 implies that woor + Y25_; 31, (1) wojmél; ™
=0(=0,...,h —1). Furthermore, if woop, + > ., womﬁﬁl) + 200 Zm:O (m)
wojmf(h ™ = 0 s valid, then from Lemma [5.4] it follows that the algebraic

polynomial f(wajk,wojl,wo()h, .y Wonp) = 0. Then, by the Hilbert Nullstellen-

satz, when regarded as a polynomial in the algebraic indeterminates ué}é), .. ug};),

Fwoji, wojiuly), .., uy) € (ufy) + Ué’;)ﬁn oot ulVe, +Z? L ()

h—m h h m
UJOJmf( )) Thus, u(()o) + “01 511 +oee Tt Uo §1n + Z] 1 Z (m) OJm§1 )
divides f(wejk, woji, u(()g), ce ué},?) By the above isomorphism, f(u ((7]3), ug]),u(()g),

- udy is divisible by u +u{" 10+ -+ 4l no +3 o S )ué;n) Njh—m-

The first factorization expression of condition 2 shows that when regarded as an

algebraic polynomial in the variables ugo), u((ﬁ), o u(()};), (ug;), u(()lj), u(()g), o ,u(()};))
= AJ[7- (uog) +u(h)fﬂ +- —|—u(h) §rn +Z] 1 Z ( ) (k)ﬁ(h k)) Thus, there
exist some 7 such that n;0 = &, (j = 1,...,n), Wthh completes the proof of the

claim.

Denote the dimension and order of V; by d, and k., respectively. We claim that
d; = d and h, = h. Since V; meets Pq,...,Py and (&1, ...,&) are such points
in their intersection variety, by Theorem B.7 d, > d. If d, > d > 0, then V, meets
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Py,...,Pq,Py. Let (m1,...,n,) be a generic point of V(I(V;),Py,...,Pg,Py). Then
by Lemma B3l (71, ...,7,) is also a generic point of V,. Since (11, ...,7,) lies on

Py, it also lies on *Py,* Py, ...,° Péhfl). From the above claim, there exist some 7
such that (n1,...,m) = (&1, .-+, &) Thus, (&1, ..., &mp) lies on Py, which implies
that F(uo,...,uq) is a zero d-polynomial, which is a contradiction. So d, = d.

It remains to show that h, = h. We first prove h, > h. Suppose the con-
trary; then h, < h — 1. Similar to the proof of Theorem (430, we can prove that
V([I(V;), Py, ..., Pg)™ 2 Py, ..., “B*™) = 0. But (&,,...,&,) is an element of
V(I(V;),Pyq,...,Py) which also lies on *Py,* Py, ..., aIP’(()hfl), which is a contradic-
tion. Now suppose that h; > h; then h. — 1 > h. From Theorems and
434 every point of V; which lies both on Py,...,P; and on *Py,* Py, ... .° ]P’(()h’_l)

is a generic point of V.. But the generic points of V.. which lie on Pq,...,Py as
well as on “Py,* Py, . ..,* [P’(()h_l) are included in {(¢;1,...,&mn): 7=1,...,9}. So
some (&1, -.,&m) lies on *Pg,* PG, ... ¢ ]P’(()h’_l). Since h, — 1 > h, we have that
(&r1y- -+, &mn) lies on “Pgh), which implies F(ug,...,ug) = 0, a contradiction. Thus,
we have proved that d, = d and h, = h.

Since the solutions of V- and PPy, ..., P4 which also lie on “Py,* Py, . . . ,* IP’(()h_l) are
generic points of V., these are therefore contained in {(&1,...,&m): 7=1,...,9}.

Hence, the differential Chow form of V, is of the form
. l
F.,-(uo, ey ud) = A.,. H ((UOO —+ u01§7_1 + 4+ 'U/Onf'rn)(h)) 7'/’,
p=1

where [, = 1 or 0 according to whether ({;1,...,&,) is in V;. Since both F; and
F are irreducible, they differ at most by a factor in F. Therefore, V; (1 =1,...,9)
are the same d-variety, and F'(ug,...,uq) is their differential Chow form. O

In order to define J-Chow varieties in the next subsection, we will introduce the
concept of order-unmixed d-varieties. A §-variety V is called order-unmized if all
its components have the same dimension and order. Let V be an order-unmixed
d-variety with dimension d and order A and V = Ué:1 V; its minimal irreducible

decomposition with F;(ug,uy,...,uy) the Chow form of V;. Let
1

(5.1) F(ug, .., ug) = [ Fi(uo, u, .. ., ug)*
i=1

with s; arbitrary nonnegative integers. Associated with (B.l), we introduce the
concept of a differential algebraic cycle, or simply a d-cycle, with V = 22:1 5:V;
as a generalization of the concept of an algebraic cycle in algebraic geometry [13],
where s; is called the multiplicity of V; in V. Recall that we have defined the
d-degree m and leading d-degree g for an irreducible §-variety V in Definitions 19
and [£33] respectively. Let g; and m; be the leading d-degree and d-degree of V;
respectively. Then the leading d-degree and d-degree of V is defined to be 22:1 SiGi
and 22:1 s;m;, respectively.

Given a d-polynomial G(uy,...,uy) with ord(G,ugp) = h, it may be reducible
over F such that some of its irreducible factors are free of ué’é). In that case, if the

product of all such factors is L, then we define the primitive part of G w.r.t. uég)

Licensed to Academia Sinica. Prepared on Fri Jul 5 06:12:57 EDT 2013 for download from IP 159.226.25.243.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



4620 XTAO-SHAN GAO, WEI LI, AND CHUN-MING YUAN
to be G/L. Otherwise, its primitive part w.r.t. u(()g) by convention is defined to be
itself. Then we have

Theorem 5.5. Let F(up,uy,...,uy) be a §-polynomial and F the primitive part

of F with respect to the variable ué}é). If I satisfies the four conditions in Theorem

B, then F is the Chow form for the §-cycle of dimension d and order h.

Proof. By definition, F' = Bﬁ, where ord(B,up) < h. Since F' is J-homogenous
in u; for each i, F is d-homogenous in each u;, too. Also, since B is free of
uég), i.e. B divides A, then F satisfies conditions 2 and 3, and moreover the
(41, --,&n) In the factorization are the same as that of F. By the proof of
Theorem B we have that I(&:q,...,&) is of dimension d and order h over

F. Then similar to the proof of Lemma [£1] and Theorem LTIl we conclude that

I(= 32021 v0i€rjs -+ oy — 2o j—1 Vaj&rj) is of dimension d over F(vij :i=0,...,d;j =
1,...,n) and its relative order w.r.t. any parametric set is h, where v;; (i =
0,...,d;j = 1,...,n) are d-indeterminates over F(&1,...,&n). In particular,
tr.deg F(Co, €1, -5 Ca) /F(Cis- -5 Ca) = h, where {; = =377 v;;&;.  Thus
B(= 32021 005&rjs s — 2o y—y Vaj€rg) 0. But F(= 320 v0€rjs -y — 27—y Vai&ry)
= 0,50 F(= " v0i&rj,- - — S0 ajérj) = 0. Tt follows that F(S%, ..., S%,)

= 0, for if we suppose the contrary, then B(S%,, ..., S9,) = 0. But if we specialize
55.(7 < k,j > 0) to 0 and s, (k > 0) to —vig, then

B(— ZUOjfrj, ey Zvdjfrj) =0,
=1 =1

which is a contradiction. Thus, F satisfies condition 4.

Now we claim that F' is the Chow form of some d-cycle. Let V. (1 =1,...,¢g) be
the irreducible §-F-variety with (¢, ...,&) as its generic point over F. Following
the steps in the proof of Theorem [B.1] exactly, we arrive at the conclusion that the
Chow form of V. is of the form

)
I,
F-,—(ll(), ey lld) = AT H ((U‘OO + UOlf‘rl +-+ uOng‘rn)(h)) )
p=1

where [, = 1 or 0 according to whether (&;1,...,&,) is in V. Since each &,
is in at least one of the d-varieties V;, the Chow form of Ui:l V., is of the form
G(UO, ceey ud) = Hf_zl(Ff(uO, RN ud))s-r = C’(uo, ceey ud) HZ:l ((Uoo =+ umfﬂ +
e uonfm)(h))m” with 7, > 0. Since F and G have the same factors (ugo +
uprér + -+ u0n§Tn)(h) and the primitive factor of F wort. u(()g) is itself, thus we
can find 7., such that F= G, which completes the proof. |

5.2. Differential Chow quasi-variety for a differential algebraic cycle. A
d-cycle V in the n-dimensional §-affine space with dimension d, order h, leading
0-degree g, and d-degree m is said to be of index (n,d, h, g, m). In this section, we
will define the 6-Chow quasi-variety in certain cases such that each point in this
d-variety represents a d-cycle with a given index (n,d, h, g, m).

For a given index (n,d,h,g,m), a é-polynomial F(ug,...,uy) which has un-
known coefficients ay (A = 0,...,D) and satisfies the following two conditions is
referred to as a §-polynomial with index (n,d, h,g,m).
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1) F is a homogenous polynomial of the same degree m in each set of indetermi-
nates u; = (U0, Ui1,. .-, Uin) (i = 0,...,d) and their derivatives. Furthermore, for
each u;j, ord(F, u;;) is either h or —oo. In particular, ord(F, ugg) = h.

2) As a polynomial in uég),ug{), . ,ué};), its total degree is g. In particular,

deg(F, ufiy)) = g.

We want to determine the necessary and sufficient conditions imposed on ay (A =
0,...,D) in order that F' be the Chow form for a d-cycle with index (n,d, h, g, m).
Proceeding in this way, if the necessary and sufficient conditions given in Theorem
B can be expressed by some d-polynomials in ay, then the d-variety defined by
them is called the §-Chow (quasi)-variety. More precisely, we have the following
definition.

Definition 5.6. Let F(ug,...,uy) be a d-polynomial with §-F-indeterminates
a; (i = 0,...,D) in & as coefficients and with index (n,d, h,g,m). A quasi-o-
variety CV in the variables a; is called the differential Chow quasi-variety with
index (n,d, h,g,m) if a point a; is in CV if and only if F is the Chow form for a
0-cycle with index (n, d, h, g, m1) with m; < m, where F is obtained from F by first

replacing a; by a; and then taking the primitive part with respect to the variable
(h)
Uy -

In the case h = 0, since Theorems and [5.1] become their algebraic counter-
parts, we can obtain the equations for the algebraic Chow variety in the same way
as in [I6] pp.56-57]. So in the following, we only consider the case h > 0. For h > 0,
the case g = 1 is relatively simple. The following result shows how to determine
the defining equations for the 6-Chow quasi-variety with index (n,d, h, g, m) in the

case g = 1.

Theorem 5.7. Let F(uy,...,uy) be a §-polynomial with d-F-indeterminates a,
(v =0,...,D) as coefficients and with index (n,d,h,g,m) with g = 1. Let Ip
be the initial of F' w.r.t. the elimination ranking upo >~ w;; and ao,...,ar be the

coefficients of Ir. Then we can find a set of §-homogeneous §-polynomials
R, (ag,...,ap)(w=1,...,v)

in a, such that V(R, : w=1,...,v)\ V(ag,...,as) is the 6-Chow quasi-variety of
index (n,d, h,g,m) with g = 1.

Proof. In order for F to be a differential Chow form, by Theorem [[.2] F' must be
6-homogeneous in each u;. Let A be a §-F-indeterminate. For each i, replacing u;
by Au; in F', we should have

F(U.O, ey U, )\U.Z‘,U.i+1, .. .,ud) = )\mF(uo, .. .,ud).

Comparing the coefficients of the power products of A, u;; and their derivatives,
we obtain a system of linearly homogenous equations R, (ag,...,ap) = 0 (w =
1,...,e1) in a,, which are the conditions for F' to be d-homogeneous and with
degree m in each u;. So by Gaussian elimination in linear algebra, we can obtain
a basis for the solution space of R, = 0(w = 1,...,e1). More precisely, if the
coefficient matrix of this linear equation is of rank r, then r of {ao,...,ap} are the
linear combinations of the other D + 1 — r of a,,. Now substitute these r relations
into F' and denote the new d-polynomial by Fj. That is, F} is a §-homogenous
d-polynomial in each u; which only involves D + 1 — r independent coefficients a,,.
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Since g = 1, F can be written in the form
Fl(u07 ceey ud) = Aou(()}s) + Alu((fll) 4+ 4 Anu(()’;? + B,

where A; and B are free of ug’;). Denote —(Alugl) -+ Anu(m + B)/Aop by

~. Then u((fs) = = is the solution of Fj as an algebraic polynomial in ué}é). Let

g = OF / OF
J Bué’;) 8ug}8) “(())(1)):7
proof of Theorem 27, we define the derivatives of £; to be g](’“) = (5§§k_1)) |u(h,>_7
00 —

It is easy to see that this definition is well defined. Since F} is §-homogeneous in
ug, by Theorem E.16, for r # 0,

zn:z k+r (k) oF, —0
r Yo oulktr) -

= Aj/Aoy am_ for j = 1,...,n. Proceeding as in the
Ugo =7

§=0k>0 0j
In the case r = h, we have Z?:o uoj;u—lgé) = 0. Set ué}é) = v in the identity
Z;L:Ouoj% = 0; then we have wugy + Z;L:1 up;€; = 0 with u(()g) = ~. So
0j
(€S T S %h_l), e ,ﬁ,(Lh_l)) is a solution of *Py,*Py,...,* ]P’(()h_l) and v =

—(Z?Zl uojfj)(h). So Fi(ug,...,uq) = Ao(uoo—l—Z?:l uojfj)(h). As a consequence,
with these &;, the second condition and the second part of the third condition in
Theorem 1] are satisfied.

In order for F; to be the Chow form for some d-variety, by Theorem [l
(&1,...,&,) should satisfy P, = 0(0 = 1,...,d) and Fy(S%,...,5%) = 0, where
St are (n+1) x (n+ 1)-skew symmetric matrices with elements independent inde-
terminates and & = (1,&1,...,&,)7.

First, setting y; = A;/Ap in P, = 0, we get us0do + Z _UsjA; = 0. Then
we obtain some equations in a, by equating to zero the coefﬁments of the vari-

ous d-products of ug,...,uy. This gives d-polynomials R, (ag,...,ap) (w = e +
]., ey 62).
Second, we obtain some d-equations x,(ay,y1, ..., yn) by equating to zero the

coefficients of all §-products of the independent indeterminates s;k (j > k) in
Fi(S%,..., S%Y) = 0 with Y = (1,y1,...,¥n)T. Then setting y] = §(k)

the above x; and clearing denominators, we obtain polynomial equations p,, in ul j)
and a,. Equating to zero the coefficients of the power products of the u( ) in Dus
we finally obtain d-polynomials in a,: Ry(ag,...,ap) (w=ex+1,...,v). We then
obtain the defining equations R,, = 0 for the Chow variety.

We now show that all the R, are d-homogenous J-polynomials. Denote a =
(agy-..,ap). We have known for w = 1,...,e; that R, are linearly homoge-
nous J-polynomials in a. Since F; as well as A; are linearly homogenous in
a, R,(a)(w = e; +1,...,e3) are linearly homogenous dé-polynomials. To show
R,(a) (w=ez+1,...,v) are 6-homogenous d-polynomials, by induction on k, we
first show that for any §-F-indeterminate A and for each 7 and k, £ j(-k) (Aa) = fj(.k)(a).

By the expression of 7, it is clear that y(Aa) = v since §; = AJ-/AO|u(h)_7 and
00 —
AAj(a .
&(a Ao )\a)’ () (na) = Wﬁai’ué’g):w = ¢;(a). So it holds for k = 0. Suppose
it holds for k — 1, that is, fj(-kfl)()\a) = fj(-k*l)(a). Since §J(-k) = (6§J(-k71))’ s
Uoo =7

Uy =
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67 0a) = (56" 0)| = O V@) = 67 (@) Now we

are going to show that R, (a) (w =ez+1,...,v) are d-homogenous §-polynomials.
Since Fj is linearly homogenous in a, each x,(ay,,y1,...,yn) is linearly homoge-
nous in a. Setting yj(.k) = §j(.k) in xr, it is clear that x,(a,,&,...,&)(A\a) =
A xr(ay,&1,...,&) and the denominator of x,(ay,&1,...,&,) is a pure algebraic
homogenous polynomial in a. Thus, p,, is -homogenous in a and the J-homogeneity
of R, follows.

Let ag, ..., as be the coefficients of Ir. Then we claim that the quasi-projective
o-variety CV = V(R,, : w = 1,...,v) \ V(ag,...,ar) is the 6-Chow quasi-variety.
Indeed, for every element (dy, . . .,dp) in CV, following the proof of this theorem, F'

with coefficients a, satisfies the four conditions in Theorem 5.1l And since g = 1,
its primitive part must be irreducible and satisfy the four conditions too, which
consequently must be the Chow form for some irreducible d-variety with index
(n,d,h,1,my) with m; < m. O

The following example illustrates the procedure to compute the J-Chow quasi-
variety in the case of g = 1.

Example 5.8. We consider a J-polynomial which has 16 terms and has index
(2,1,1,1,2) toillustrate the proof of Theorem[B.7t F = aqu3qug1 uhy+a2u11u12uo2uf,
tazuortaui2th g +asudyuiiuly+asuiyuoouh; +asuiouizuosul, +arugouoztiauly +
asugzulouln+09U10U01U12U62+010U00U02U11U/12+6111U11U12U00U62+a12U01U02U10U/12
+a13up0u3; o2 + A14Uep Up1U11UI2 + G15UN1UIUO2UTT + A16UI0UZ; U12. We will de-
rive the conditions about the coefficients a,, under which F' is a Chow form. First,
in order for F' to be J-homogenous, we have Ry = a5 + a1, Rs = ag + a4, R3 =
ag +ag, Ry = a10+ar, Rs = a11 +az, R = a12 +az. Replace as, ag, ag, a10,a11, 012
by —a1, —a4, —ag, —ay, —as, —ag respectively in F' to obtain Fj.

For such an Fy, Ag = aju?yugr +agsuiiuiatoz, A1 = —a1uigtioo+asuioUiatioe, Az
= —agU1oUo1 U12—A2U11U12 Ugo, and B =azug1 uo2t12t)o+asudsui u)g+aruootoztiis
uhy —agudyuiouly — arugouout 1t — asuor o210l +a13uooUT; Uo2 +a14uoo Uo1 U1
U12+a15U01 U0 U211 +aA16U10ud; U12. Then v = (Fi—Agufg) /Ao, &1 = Al/AO|u{)O='ya
and & = AQ/AO‘U()O:W. To confirm that wig + u11&1 + w122 = 0, we must have
R;=a¢—a1 =0,Rg =as+a; =0.

In order to satisfy the fourth condition of Theorem BT, we obtain a set of §-
polynomial equations R, (ag, ..., a16) = 0 which have more complicated forms. By
simplifying them with R; = 0 and Rg = 0, we obtain Ry = ayaq(a15 + a16), R0 =
arai(ais + a16), Ri1 = arai(a1z — aie), Riz = ai(as — ar), Rz = ai(as + ar),
Ris = aais(ar — az), Ris = a15a} + arazars, Rig = awaa} + arararg, Rir =
arai(a; — a7), Rig = a2a13 — ajazais, Rig = a3 — a?a;. Thus the Chow quasi-
Variety is V(Rl, ey ng)/V(al, a2) = V(CL2+CL1, CL3+CL1, a4 —an, CL5+CL1, ag—ay, a7 —
ai,ag+ay, a9+ a1, a10+ay,a11 —ag, a2 —ar, a4 +aiz, a5 +aiz, a6 — aiz)/Viar).
From Example [4.6] it is easy to check that each point of this quasi-variety is the
coefficient of the Chow form for V(a1y] + a13y2) for some aj,a;3 € F. Note that
a3 could be zero and the result is still valid.

We are unable to prove the existence of the Chow quasi-variety in the case of
g > 1. The main difficulty is how to perform elimination for a mixed system
consisting of both differential and algebraic equations. In our case, condition 2
and the second part of condition 3 of Theorem [B.I] generate algebraic equations
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in the coefficients of F' and §;;, while condition 1, the first part of condition 3,
and condition 4 of Theorem [B.1] generate d-equations. Also, we need to eliminate
variables &;; from these equations.

The following example shows that the §-Chow quasi-variety can be easily defined
in the case of n = 1.

Example 5.9. If n = 1, then d = 0, and every irreducible J-homogeneous 6-
polynomial in uyg = (ugo, uo1) is the differential Chow form for some irreducible
d-variety.

Proof. Let F(ug) = F(ugo, up1) be an irreducible é-homogenous §-polynomial with
degree m and order h. Then F(—2,—1) = (—u—m)mF(uoo,um) Let g(—32) =

F(—32,-1). It is easy to show that g(y) is an irreducible §-polynomial. By Ex-

ample 6] the Chow form of the prime d-ideal sat(g(y)) is (—uo1)™g(—22) =

uo1
(—uo1)™ (=42, —1) = F(uoo, uo1), and the result is proved.

As a consequence, the Chow quasi-variety in the case of n = 1 always exists.

Example 5.10. Let up = (ugo,uo1) and F(up) be a homogenous J-polynomial
with index (1,0,h,g,m) and coefficients ag,...,ap. Let Ir be the initial of F
w.r.t. the elimination ranking wgg > ug1 and ao,...,ay the coefficients of I'r. Let
R, (ag,..., ap)(w=1,...,e1) be the equations obtained in the proof of Theorem
BE7 Then under the condition R, (ag,...,ap)=0(w =1,...,e1), F will become
a d-homogenous d-polynomial. Then by Example 50 V(R, : w = 1,...,¢e1) \
V(ao, .. .,ar) is the 6-Chow quasi-variety with index (1,0, h, g, m).

6. GENERALIZED DIFFERENTIAL CHOW FORM AND DIFFERENTIAL RESULTANT

We mentioned that the differential Chow form can be obtained by intersecting the
d-variety with generic §-hyperplanes. In this section, we show that when intersecting
an irreducible d-variety of dimension d by d 4+ 1 generic §-hypersurfaces, we can
obtain the generalized Chow form which has similar properties to the Chow form.
As a direct consequence, we can define the differential resultant and obtain its
properties.

6.1. Generalized differential Chow form. Let V C £" be an irreducible §-F-
variety with dimension d and order h, and

n  8;
(6.1) P; = w0 + Z Zuijkyj(-k) + Z Ui (Y(si))a (i=0,...,d)
j=1k=0 ez
1<|a|<m;
be a generic d-polynomial of order s; > 0 and degree m; > 1, where w;o, Uijk, Uia
(i =0,....d;5 = 1,...,n;k = 0,...,855 € Z"(s i+ ,1 < Jaf < my) are 6-F-
indeterminates in £ and (Y[*)* is a monomial in F[Y[*] with exponent vector

a:(alo,...,ano,alla~"aan13~-~7als,ﬂ,,“-;ansi)a Le. ( ) H H(yj )aﬂk

and |a| = 37| 35 aj. For convenience in the rest of the paper, we denote the
nonlinear part of each P; by f;, that is,

Pi =“i0+zzumy§k)+ﬁ (i=0,...,d).

j=1k=0
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Denote u to be the set consisting of all the w;j; and w;o for ¢ = 0,...,d. Let
&=(&,...,&,) C E™ be a generic point of V', which is free from F(u, ugp, . . . , Udo)-
We define d + 1 elements (o, (1, .. .,Cq of F(u,&1,...,&):

(62) CZ:—ZZUZ]kfj(k)—fl(fl,,gn) (’L:O,,d)
j=1k=0

Similar to the proof of Lemma [l we can prove that if d > 0, then any set of
d elements of (o, ..., (4 is a é-transcendence basis of F{u){Cp, ..., ¢q) over F(u). If
d =0, (o is d-algebraic over F(u). We thus have

Lemma 6.1. d.tr.deg F{u){Cp,...,Cq)/F(u) =d.

Let I be the prime d-ideal in R = F(u){zo,..., 24} having ¢ = (¢o,...,(q) as a
generic point. By Lemma [6.] the dimension of I is d. Then, the characteristic set
of Is w.r.t. any ranking consists of an irreducible §-polynomial g(zo, ..., 2q) in R
and I = sat(g). Since the coefficients of g(zy, .. ., z4) are elements in F(u), without
loss of generality we assume that g(u; 2o, ..., 24) is irreducible in F{u; 2, ..., 24}
We shall subsequently replace zg, ..., zq by oo, - - ., udo, and obtain

(63) G(uo,ul,...,ud) :g(u;uoo,...,udo),

where u; = (w0, - - ., Wijk, - - - Uia, - - -) 1 the sequence of the coefficients of P;.

Definition 6.2. The §-polynomial defined in (G3)) is called the generalized Chow
form of V' or the prime §-ideal I(V') with respect to P;(i =0,...,d).

Similar to Theorem 17 we can prove that the generalized Chow form is a -
homogeneous J-polynomial in each set of indeterminates u;, but in this case the
homogeneous degree for distinct u; may be distinct. The order of the generalized
Chow form w.r.t. u;, denoted by ord(G,u;), is defined to be max,cy,ord(g,u).
Now we will consider the order of the generalized Chow form.

Theorem 6.3. Let Z be a prime §-ideal with dimension d and order h defined over
F, and G(ug,uy, ...,uq) = g(u;ugo, 10, -.,udq) be its generalized Chow form.
Then for a fixed i between 0 and d, ord(g,u;p) = h + s — s; with s = E;i:o sy.
Moreover, ord(G,u;) = h + s — s;.

Proof. Use the notation as above in this section. Let Z; = [Z,Py,...,P;—1,Pit1,
Pyl € Flug, ..o, uim1,Wip1, - ug){y1, .-, Yn}. By Theorem BI3l Zy is a
prime d-ideal with dimension 0 and order h+sg+- - ++8;_1+S;4+1++ - +Sq = h+s—s;,
where s = Zldzo si.

Let ]IC’E = [I,]P;o, . ,Pd] C .F(u}{uoo, < Udos Y1y - - - >yn} and Z; = [I,P(), ey

P4 = [Z4,Po] € F@\ {wio}){wio,y1, ---,Yn}, where 4 = ug U --- Uug. Denote

ord(G, uip) by hy. Similar to the proof of Lemma [LI0, we can show that A =
. 0, 0, 9 9, . ..

g(u; ugo, - - -, Udo), 8u5§1) y1— 8ui’%) v Yn— 8u§é) is a characteristic set of I¢ ¢

w.r.t. the elimination ranking ugg < -+ < wj—1,0 < Uit1,0 < Udo < Ujo <Y1 < -+ <
Yn. Clearly, 7, is the d-ideal generated by I ¢ in F(U\ {wio}){wio0,y1,...,yn}. Since
{uoo, - - - s Ui—1,05 Uit1,05 - - - ,Udo } is a parametric set of I¢ e, Ais also a characteristic
set of 7y w.r.t. the elimination ranking u;p < y1 < -+ < yp. Since dim(Z;) = 0,
from Corollary we have ord(Z;) = ord(A) = ord(g, up)-

On the other hand, let Ifl) = [Id,u%) + D o uijky](»k) + fi] ¢ F{u\

{wio ){wios y1,---,yn} I =1,...,8;). Since dim(Ifl)) = 0, u;o is a leading variable
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of I{l) for any ranking. Thus, by Lemma 311l we have ord(IyH)) = ord(Iy)) +1,
which follows that ord(Il(Si)) =ord(Zy) + s;, and it is easy to see that ord(Il(si)) =
ord(Zy) + s;. Indeed, let A be a characteristic set of Z; w.r.t. some orderly ranking
Z, and let t be the pseudo remainder of w;, (83) 4 Z] O Oumky] )4 fiwrt. A
under the ranking #Z. Clearly, ord(¢,u;p) = s;. It is obvious that for some orderly
ranking, {A,t} is a characteristic set of Ifsi) with 1d(.A) and uggi) as its leaders, so
ord(I{Si)) = ord(Zy) + s;. Thus, ord(Z;) = ord(Z4) = h+ s — s;, and consequently,
ord(g,uio) = h + 5 — si.

It remains to show that ord(g, u;jx) (7 =1,...,n;k=0,1,...,s;) and ord(g, i)
cannot exceed ord(g, uio). If ord(g, u;jx) = > ord(g, uio), then differentiating the

identity g(u;¢o,...,(q) = 0 w.r.t. ug)k, we have %(u; Co,---,Cq) = 0. Thus,

88(1) can be divisible by g, a contradiction. So ord(g, u”k) < ord(g, u;p). Similarly,
ijk

we can prove that ord(g, u;,) < ord(g, uip). Thus, ord(G,u;) = ord(g, u;g). a

In the following, we consider the factorization of the generalized Chow form.
Denote h + s — s; by h; (i = 0,...,d), where s = Z?:o s;. Now consider G

as a polynomial in u(()go) with coefficients in Fy = F(u)(ugo, - ugoo 1)), where

u= ngo u;\{uoo}. Then, in an algebraic extension field of Fy we have

Q_AH hO)_'V‘r

where ty = deg(g,ugoo)). Let &rpk = Grpi/g9-0(p = 1,...,n;k = 0,...,50) and
_ _ _Og _ _0g _
g‘ra - gTa/gTO, where Grpk = Bué};%) uégo):%-; 9ra = 811,(()};0) ug)’(;o):'yr and gr0 =

9g

—= Similar to Section 4.4, we can uniquely define the derivatives of
Buooo ué}SO)

=+
v and &7, to make them elements in a differential extension field of F(u). From

ho)

g(u; o, - .., Cq) = 0, if we differentiate this equality w.r.t. uépk , then we have

dg dg

(6.4) + (=¢8) =0,
au(()};t’)c) ol (ho) P

and if we differentiate g(u;(p,...,¢q) =0 w.r.t. uéZO), then
0 - dg

(6.5) g () =,

oy
au(()i;o ) 8u(

where (5(50))0‘ = (Y(SO))O‘|(yl7__47%):(517.__75”). In the above equations, % and

0pk

_0g dg _9g . . .
o (()ho) represent o (h%) and Tl when substituting u;o by (;. For each p =
o Uop I

1,...,n and k = 0,...,sp, multiplying the equations in ([@4)) by oy, and for

a € Z (SOH) , 1 < |a| < mg, multiplying the equations in (63 by ug, and then
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adding all of the equations obtained together, we have

" d
C (ho ZZ“W ho) > o (ZO):

p=1k=0 g ezt g
1<|a|<mg

n  Sso
Thus, the d-polynomial 00 5 thoy (ho) Z Z uopka (ho) + > oo —29—  van-

(ho)
ou
Uopk EZT;(OS()-Fl) O
1<|a|<mg
ishes at (ugo, . --,ud0) = (Co,..-,Cq). Since it is at most of the same order as g, it

must be divisible by g. Also, since it has the same degree as g, there exists some
a € F such that

3 0

p=1k=0 Opk ezl o+ g
1<|(§\§m0

Setting u(()oo) = 7, in both sides of the above equation, we have

n s
Upogro + Z Z UopkGrpk + Z UpaYra = 0

p=1k=0 an;EJSO+1)
1<|a|<mo

or

n  so
Ugo + Z Z qukf‘rpk + Z Uoabra = 0.

p=1k=0 (XEZ;(()SO+1)
1<]|a|<mg

Then, we have

n S0
(U’OO + Z E qukngk + E anS‘ra)(hO)

=1 k=0 n(sg+1)
P aEZZOO
1<|a|<mo
b (ho)
+(>2 X wopk&rpk + > Upaéra) " = 0.
=1 k=0 n(sg+1)
P aEZZOO
1<|a|<myo

We have the following theorem.

Theorem 6.4. Let G(ug,uy,...,uq) be the generalized Chow form of a §-F-variety
of dimension d and order h. Then, there exist -, (p=1,...,m;7=1,...,%) in a
d-extension field of F(u) such that

(66) G(U.o, ug,... ,U.d) = A(UQ, Ug,..., ud) H Po(g-,—l, e ,f,,-n)(ho),

where A(ug,uy,...,uq) is in F{ug,uy,...,us} and tg = deg(G, u( 0)).
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Proof. From what we have proved,

G(up,uy,...,uy)

- A(uo, ULy -- e ud) H (UOO + Z Z qukaﬂk + Z UO(yfTa)(hO).

=1 p=1 k=0 aezi(oso-u)

1<|a|<mo
Denote &p0 by &rp. To complete the proof it remains to show that &,,x =

(&p0) Bk = 1,...,80) and &, = ﬁ H ((ngO) ))am. From equation (G.4)

p=13=0

and equation (.3]), we have {Eﬁ) = %/3 (,LD) (k=0,...,50) and (£60)) =

99 / 99 __ S0 we have the equalities ( / )(k) = 9 / 99__ and
8ué20) au(()go) Su ("o) ou (ho) aug’;(}e) 9ur0)

Op()

—a— n (4) (k)
oot | oot (it /o)) s, (58 / 58)

. us, —
aué’;o) 3“(()}(;0) H H( Su gho) Su (’Lo) aué’;g) ou (ho)

p=135=0

(4) Qpj
ag 89 89 8_!] dg .
sty ke gttt = 11T (Gt /58) )™ v
S ugo) = (Coy -+ -5 Cq). Similar to the proof of Theorem [£:34] we can see that both
(k)
of the differential polynomials (a eio) / A) 99 / 99 s and 99 / 99

ot ouln®” ) oull ) ol uyr? [ ouly?
n () h i) k
- 11 H <(a (ho)/%> ) vanish at u( 0t = 49)(j > 0). Thus, fipz) =
p=175=0 %00
Erpp and &rq — H H ((&.po) ) " = 0. The proof is completed. O
p=135=0

Theorem 6.5. The points (Er1,...,&m) (T =1,...,t) in (68) are generic points
of the §-F-variety V and satisfy the equations

]P)o(yla"'vyn) :u00+zzua’pky£k)+fa =0 (U:L”'ad)'

p=1 k=0

Proof. The proof is similar to that of Theorem [£.34] O

Theorem 6.6. Let G(uo,...,uq) be the generalized Chow form of V and Sg =
% with ord(G, ugg) = hg. Suppose that u;(i =0,...,d) are d-specialized to sets
00

v; of specific elements in & and P; (i = 0,...,d) are obtained by substituting u; by
vi inP;. If P; =0 (i =0,...,d) meet V, then G(vo,...,vq) = 0. Furthermore, if
G(vo,...,vq) = 0 and Sg(vo,...,vq) # 0, then the d + 1 §-hypersurfaces P; = 0
(i1=0,...,d) meet V.

Proof. The proof is similar to that of Theorem [£.43] O

6.2. Differential resultant of multivariate differential polynomials. As an
application of the generalized Chow form, we can define the differential resultant
of n 4 1 generic d-polynomials in n variables. Let Z = [0] be the d-ideal generated
by 0 in F{Y}. Then dim(Z) = n. Let G(ug,uy,...,u,) be the generalized Chow
form for Z. Then we will define G(ug,uy,...,u,) to be the differential resultant
for the n + 1 generic §-polynomials given in (G.1]).
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Definition 6.7. The differential resultant for the n + 1 generic §-polynomials P;
in () is defined to be the generalized Chow form of Z = [0] associated with these
P;, and will be denoted by R(uy,...,u,) = G(up,...,u,).

Theorem 6.8. Let R(uy,...,u,) be the differential resultant of the n + 1 4-
polynomials Py, ..., P, given in @I with ord(P;) = s; and deg(P;) = m;, where

u; = (U0, -5 Uijk, - > Wiy ---) (1=0,...,n). Denote s = > s;, D = max]_,{m;}
i=0
and u = J" o w;\{wio}. Then there exist hji, € F(u)[y1,...,Yn,---, ygs), . ,yﬁf)]
such that
n S$—Sj
R(UQ, ey U.n) = Z Z hjkék]P)j.
=0 k=0

Moreover, the degree of hji, in Y is bounded by (sn+n)?D*" " + D(sn + n).

Proof. Let J be the d-ideal generated by Py, ..., P, in F{ug,...,Upn,y1,---,Yn}-
Let #Z be the elimination ranking u < y, < -+ < y1 < Uy < -+ < gy with
arbitrary ranking endowed on O(u) = (fu : u € u;6 € 0). Clearly, J is a prime
0-ideal with Py,...,IP, as its characteristic set w.r.t. Z#. Thus, uU {y1,...,yn}
is a parametric set of J. From the definition of R, R € J. In R(uy,...,u,) =

G(ug,...,u,) = g(w;ugg, - .., Uno), let uo (¢ = 0,...,n) be replaced respectively
by
n S;
P’i - Z Z U’ijky§k) - Z uia(Y(Si))aa (Z = 07 DR d)7
j=1k=0 ezl (it
1<|a|<m;
and let R be expanded as a polynomial in Py, ..., P, and their derivatives. The term
not involving Py, . .., IP,, or their derivatives will be a §-polynomial only involving uU
{y1,- -, Yyn} which also belong to 7. Since JNF{u,y1,...,yn} = {0}, such a term
will be identically zero. So R is a linear combination of Py, ..., P, and some of their

derivatives. Since ord(R,u;0) = s—s;, the above expansion for R involves P; only up
to the order s—s; and the coefficients in the linear combination are J-polynomials in
F{a}yi, - Yn,--- ,ygs), . ,y,(f)]. Denote R = F(u)[y1,-- -, Yn, - - - ,ygs), . ,y,(f)].
Thus, R € (0° %Py, ..., 0Py, Py,..., 05 *"P,,...,0P,,P,) C R, which implies that
(657 %°Py, ..., 0Py, Po,..., 05 5Py, ..., 0P,,P,) in R is the unit ideal. By [31, The-
orem 1], there exist Aj;, € R with deg(A;x) < (sn+ n)?D*" ™ 4+ D(sn + n) such

that
1=2_ 2 APy,
§=0 k=0
where D = max{mg, m1,...,m,}. If we multiply the above equation by R and
denote A;, R by hjj, we complete the proof. O

As a consequence of the above five theorems proved in this section, the properties
of the differential resultant listed in Theorem are proved.

Let R(ug,...,u,) be the differential resultant for the n+1 generic §-polynomials
P; in (G.I). When each u; are specialized to specific elements v; € F* 1 R(vo,...,
v,,) is called the differential resultant of P;(i = 0,...,n) which are obtained by
replacing u; by v; in P;. By Theorem [6.8] the vanishing of the differential resultant
for n+1 0-polynomials in F{Y} is a necessary condition for them to have a common
solution.
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Remark 6.9. It is easy to see that if s; = 0, then the differential resultant of P;(i =
0,...,n) becomes the Macaulay resultant for n+1 polynomials in n variables [9, [I§].
From Theorem [[L3] we see that the differential resultant has similar properties to
that of the Macaulay resultant. Special attention should be payed to the second
property which is a differential analog to the so-called Poisson type formulas for
algebraic resultants [28]. Also note that many properties of the Macaulay resultant
are yet to be extended to the differential case. The most significant one might be to
find a matrix representation for the differential resultant similar to the one given in
[9, p.102]. Note that such a formula was claimed to be given in [Bl [6], which is not
correct, as we mentioned in Section 1 of this paper. As a latest development, we
defined the differential sparse resultant and proposed a single exponential algorithm
to compute it [26].

Similar to the differential Chow form, the differential resultant can be computed
with the differential elimination algorithms [11 [7] [32] [39] [14].

Example 6.10. The simplest nonlinear differential resultant is the casen = 1,dy =
di = 2,50 =0,s; = 1. Denote y; by y. Let Py = ugo + uo1y + up2y?, P1 = w19 +
w11y + w12y’ + u13y? + ur4yy’ + uis(y’)%. Then the differential resultant for Py and
P is a é-polynomial R(ug,uy) such that ord(R,up) = 1, ord(R,u;) = 0 and R is
d-homogenous of degree 8 in uy and degree 2 in uy, respectively. Totally, R has 206
terms. Moreover, R has a matrix representation which is a factor of the determinant
of the coefficient matrix of Py, y'Po, y°Po, yy'Po, y'*Po, Py, yPh, v' Py, yy' Py, y'*Po, P,
yP1,9' Py, yy'P; w.r.t. the monomials {y' (y/ )10 <1y < 4,0 <1y < 4,1 +1; <4}

7. CONCLUSION

In this paper, an intersection theory for generic differential polynomials is pre-
sented by giving the explicit formulas for the dimension and order of the intersection
of an irreducible differential variety with a generic differential hypersurface. As a
consequence, we show that the differential dimension conjecture is true for generic
differential polynomials.

The Chow form for an irreducible differential variety is defined. Most of the
properties of the algebraic Chow form have been extended to its differential coun-
terpart. In particular, we introduce the concept of differential Chow quasi-variety
for a special class of differential algebraic cycles. Furthermore, the generalized
Chow form for an irreducible differential variety is also defined and its properties
are proved. As an application of the generalized differential Chow form, we can
give a rigorous definition for the differential resultant and establish its properties
which are similar to that of the Sylvester resultant of two univariate polynomials
and the Macaulay resultant of multivariate polynomials.

The results given in this paper enrich the field of differential algebraic geometry.
Further, many new problems can be raised naturally. Some of them are already
mentioned in Remarks [.44] and We mentioned in Section 1 that the algebraic
Chow form has many important applications. It is very interesting to see whether
some of these applications can be extended to the differential case.

As we mentioned in Section 5, the theory of differential Chow quasi-varieties is
not fully developed, and the main difficulty is to develop an elimination theory for
mixed systems with both algebraic and differential equations.

In this paper, we only consider Chow forms for affine differential varieties. It is
not difficult to extend most of the results in this paper to the differential Chow form
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of differentially projective varieties. Note that differentially projective varieties were
defined by Kolchin in [24]. Tt is expected that Theorems 43 45 and B could
be improved for differentially projective varieties.
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